
c© 2013 Andrei Alexandrescu 1 / 46

Quo Vadis?

Andrei Alexandrescu

Research Scientist

Facebook



aspirations

c© 2013 Andrei Alexandrescu 2 / 46



Principled & Practical
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• Slices

• Approach to modularity

• Support for generic programming

• Error handling done right: scope

• Qualifiers

• Approach to @safety



“Meh” features
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• @property

• synchronized’s interplay with shared

• delete

• foreach_reverse

• qualified postblit



Features that don’t exist (but work)
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• Attribute inference

• Compile-Time Function Evaluation

• Scoped imports

• Value Range Propagation (no-pain conversions)

• Relaxed purity



Functional Factorial (yawn)
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ulong factorial(uint n) {

return n <= 1 ? 1 : n * factorial(n - 1);

}

• It’s PSPACE!

• Somebody should do hard time for this



However, it’s pure
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pure ulong factorial(uint n) {

return n <= 1 ? 1 : n * factorial(n - 1);

}

• Pure is good



Functional Factorial, Fixed
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pure ulong factorial(uint n) {

ulong crutch(uint n, ulong result) {

return n <= 1

? result

: crutch(n - 1, n * result);

}

return crutch(n, 1);

}

• Threads state through as parameters

• You know what? I don’t care for it



Honest Factorial
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ulong factorial(uint n) {

ulong result = 1;

for (uint i = 2; i <= n; ++i) {

result *= i;

}

return result;

}

• But no longer pure!

• Well allow me to retort





Pure is as pure does
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• “Pure functions always return the same result for the

same arguments”

• No reading and writing of global variables

◦ (Global immutables okay)

• No calling of impure functions

• Who said anything about local, transient state inside the

function?



Transitive State
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pure void reverse(T)(T[] a) {

foreach (i; 0 .. data.length / 2) {

swap(data[i], data[$ - i - 1]);

}

}

• Possibility: disallow

• More useful: relaxed rule

• Operate with transitive closure of state reachable

through parameter

• Not functional pure, but an interesting superset

• No need for another annotation, it’s all in the signature!



User-defined types
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pure BigInt factorial(uint n) {

BigInt result = 1;

foreach (i; 1 .. n + 1) {

result *= i;

}

return result;

}

• Works, but not in released version

• Not all stdlib “purified” yet



Aftermath
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• If parameters reach mutable state:

◦ Relaxed pure—no globals, no I/O, no impure calls

• If parameters can’t reach mutable state:

◦ “Haskell-grade” observed purity

◦ Yet imperative implementation possible

◦ As long as it’s local only
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comprehensive != big
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comprehensive != perfect



Allocators
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• We want a comprehensive design

• (not a big/complex/perfect one)

• It should work



Allocation Archetypes
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• Garbage collected

• Garbage collected + free

• malloc-based

• Region-based



Composability
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• Allocators must stack efficiently

• Example: freelist over region

• (Related work: HeapLayers)



Safety
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• Some allocators safe (GC)

• Some unsafe (malloc)

• Some can be made safe (regions)





vision
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Fable
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Neophyte: “What should I do to be a

better person?”



Fable
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Guru: “Do what a good person does.”



Applied
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We: “What should we do to scale to 1M

users?”



That means
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• Stability

• Quality, quality, quality

• Expanding platform base

• Operational professionalism
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Stability
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Quality
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Expanding platform base
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Operational professionalism



Two-pronged Approach
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• Play into strengths

• Improve on weaknesses



Strategic strengths
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• Active community

• Incredibly fast turnaround

• Compile-Time Function Execution

• Domain-Specific Embedded Languages

• Libraries

• Ranges and algorithms; bulk processing

• Concurrency and parallelism

• One-stop shop for getting work done





Weaknesses
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• Quality of implementation

• Formal definition

• Available libraries; package management

• Ecosystem tools

• Documentation and tutorials

• Process and roadmap



people
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Make DConf an annual

rallying point



The People Connection
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• Any community needs nurturing

• Focus on increasing participation

• Welcoming new community members

• D Summer of Code (DSOC)?

• forum.dlang.org dedicated discussions place



“D is totally useless”
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“When i tried to rewrite example to D, i was

shocked. [...] Dlang is a toy in outer space. [...]

One can only to write a+b program in schools in it.

Now I understand, that’s why D doesn’t have

popularity after 10+ years of existence.”

– Temtaime (tinyurl.com/d-useless)

tinyurl.com/d-useless


On second thought. . .
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“I investigated a little more in it. Thanks to Jack

Applegame, we made a copy of gl/gl.h and

opengl32.lib for DMD.

(http://acomirei.ru/u/gl.d,

http://acomirei.ru/u/opengl32.lib). I

hope it will be included in DMD, now it’s first draft

of our work.”

– Temtaime

gl/gl.h
opengl32.lib
http://acomirei.ru/u/gl.d
http://acomirei.ru/u/opengl32.lib
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Community
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Academics
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Corporate



Summary
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