Copy and Move Semantics

in the

D Programming Language

Ali Cehreli
DConf 2013

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Inroduction

e Basic concepts
o User-defined types
o Fundamental operations
o Immutability

» A search of idioms and guidelines

Idioms of other languages may not be applicable

http://ddili.org

Two C++ guidelines:
e "Make everything const until you can't."

» "Pass objects by reference if they are expensive to copy."

// C++
MyInt average(const MyInt & lhs, const MyInt & rhs);
const MyInt result = average(var, MyInt(1l));

const taking(result);

May not be applicable in D:

// D

MyInt average(ref const(MyInt) lhs, ref const(MyInt) rhs)

const result = average(var, MyInt(1l)); // « _
// May fail in the future due to a change in MylInt

immutable taking(result);

// May fail in the future
immutable imm = var;

Some definitions

 Type semantics

o Value semantics

o Reference semantics
e Kinds of values

o lvalue (left-hand side value)

o rvalue (right-hand side value)
* Type qualifiers

o mutable

o immutable

o const

(shared is out of the scope of this presentation.)

Value semantics versus reference semantics

Easy to distinguish by the behavior of the = operator.

 Value semantics: Variables represent separate states

a = b;
assert(a == b);
a.mutate();
assert(a !'= b); // separate objects
a b
R +--- --- +------- +---
| state | | state |
R R +--- --- +------- +---

* Reference semantics: Variables are handles to the same state

a =b;
assert(a == b);
a.mutate();
assert(a == b); // two handles to the same object
a b
N +--- --- F------- +--- --- N +---
| state | | | | . |
ceefamcen--- +--- et t--- et e I
A I
I

Lvalues versus rvalues

Lvalues

e can be on both sides of an assignment operation
e can have addresses
e can be bound to a reference

Simple example: "Named variables are lvalues."

Rvalues
* cannot be on the left-hand side of an assignment operation
e cannot have addresses
» cannot be bound to a reference
Simple example: "Literals and temporary variables are rvalues."

int foo() { return 1; } // foo's return value is an rvalue
void bar(ref const(int) 1) {}
/] ...
foo() = 2; // <
int * p = &(foo()); // <
bar(foo()); // <

http://ddili.

Rvalues cannot be bound even to const

references

struct S
{}
void foo(ref const(S) p) {

/* 00 X/
}
/] ...

foo(S()); // « CompillationNERROR

See http://wiki.dlang.org/DIPs and http://forum.dlang.org/ for frequent
improvement requests for allowing this.

http://wiki.dlang.org/DIPs
http://forum.dlang.org/

Type qualifiers

There are three kinds of mutability:
e Mutable: The state can be mutated (the default; no keyword)
 immutable: The state never mutates

e const: The state is not mutated through this reference

Then there is the wildcard:

* inout: Placeholder for the previous three (compiled as const).

Significant: Both immutable and const are transitive. The entire
state that is reachable through a variable is also immutable or const,
respectively.

User-defined types in various languages

Language struct class
C value -
C++ value value
Java - reference
C# value reference

D value reference

struct versus class in D

D structs are somewhere between C structs and C++ structs.

struct

* Value type

Scoped lifetime, allowing the RAII idiom
No OOP

Layout and alignment control of members

* more...

class
» Reference type
* Garbage collected
* Supports OOP

* more...

10

Fundamental object operations

Construction

 From scratch

» As a copy of another object

By moving from an rvalue
Mutation (optional)

* Incrementally

 As a whole

o By assigning from another object (copy new state + destroy
old state)

o By swapping with an rvalue

Destruction (not always)

11

D support for fundamental operations

Operation

Construct from scratch

Construct as a copy

Construct by moving from an rvalue

Mutate incrementally

Mutate as a whole by assigning from an Ilvalue
Mutate as a whole by swapping with an rvalue
Destroy

* Depends on whether the object is scoped or dynamic;
and if dynamic, whether the runtime has decided to destroy it.

N/A: Class objects are never rvalues.
Not their values, but their handles appear in expressions.

http://ddili.org

struct

automatic
automatic
automatic
automatic
automatic
automatic
automatic*

class

automatic
user-defined
N/A
automatic
user-defined
N/A
automatic*

12

Default class semantics

No state mutation.

 Copy syntax: A class variable starts its life as an additional
reference to an existing garbage-collected class object.

auto b = a; // b starts life as another handle
// to a's object
assert(b is a);

 Assignment syntax: A class variable disassociates from its object
and becomes a handle to another object.

a=c¢; // a 1s now another handle
// to c's object (not b's anymore)

assert(a is c);

13

http://ddili.org

User-defined class semantics

One possibility:

class C {

// ...
inout(C) dup() inout {
// ... make a copy ...
return new inout(C)(/* ... */);

}

// (Not a common operation.)
void takeOver(C rhs) {

// ... move the state of rhs to this object ...
}
auto m = new C;
auto i = new immutable(C);
auto ¢ = new const(C);
auto m dup = m.dup();
auto i dup = i.dup();
auto c dup = c.dup();

// 1inout produces correct types

static assert(is(typeof(m dup) == C));

static assert(is(typeof(i dup) == immutable(C)));
static assert(is(typeof(c dup) == const(C)));

m.takeOver(m dup);

14

Copying a struct object
The postblit function

struct objects are copied automatically by the following algorithm:

1. Bit-copy from source to destination (aka blit (bit level transfer))

(This is so fundamental that self-referencing structs are not valid
in D.)

2. If defined, execute the post-blit function of the type (presumably
to make corrections to the copied object)

struct S {
int[] data;

this(this) {
data = data.dup;
}

40 anc

15

struct semantics for
Ivalue on the right-hand side

 Copy syntax: An object starts its life as a copy of an existing
object.

auto b = a; // copy: 'b' starts life as a copy of 'a’
assert(b is a);

 Assignment syntax: An object becomes a copy of another object.
The old state on the left-hand side gets destroyed.

b = c; /* copy + destroy: 'b' is now a copy of 'c';
the old 'b' is destroyed */
assert(b is c);

16

The assignment algorithm for
Ivalue on the right-hand side

auto src = S();
dst = src; // right-hand side is an lvalue

The algorithm is efficient and exception safe:

// Equivalent pseudo-code

{
// Make an actual copy of src (maybe expensive and may throw)
auto tmp €deep-copy€ src;
auto dst <<bit-swap= tmp;

} // 'tmp' destroys the old state here

This is an improvement over C++, where the default behavior of
assignment does not have the strong exception safety guarantee.

http://ddili.org 17

struct semantics
for rvalue on the right-hand side

// The return value is an rvalue
S foo() { /* ... */ }

 Copy syntax: An object starts its life by a bit-copy of the rvalue
and the rvalue's destruction is elided.

auto a = foo(); /* move: 'a' starts life with the state
of the returned object */

 Assignment syntax: The two states are effectively swapped.

a = foo(); /* swap: 'a' takes over the state of the
right-hand side object */

18

The assignment algorithm for
rvalue on the right-hand side

dst = foo(); // right-hand side is an rvalue

// Equivalent pseudo-code

{
dst <<&bit-swap=> rvalue;

} // 'rvalue' destroys the old state here

19

immutable values

immutable i
immutable s

 Deep guarantee: Any state that is accessible through this variable
is immutable as well.

* Bonus: Is implicitly shared (no need to lock in multi-threaded
code).

Can be copied from mutable and const:

auto m = 42;
immutable im = m; // automatic copy from mutable int

const ¢ = 43;
immutable ic = c; // automatic copy from const(int)

This slide is too optimistic because there is no mutable indirection
here.

http://ddili.org

20

http://ddili.org

const values

const c
const s

42;
S(1);

 Deep guarantee: No state that is accessible through this variable
can be modified

* (no compatibility with shared)

Can be copied from mutable and immutable:

auto m = 42

const cm = m; // automatic copy from mutable int

immutable i = 43;
const ci = i; // automatic copy from immutable(int)

21

const versus 1immutable values

void foo byValue(int i) {/% ... ¥/}
void foo i(ref immutable(int) i) { /* ... */ }
void foo c(ref const(int) i) {/* ... ¥/}
/] ...

immutable i = 1;
foo byValue(i);
foo 1i(1i);
foo c(1i);

const ¢ = 1;
foo byValue(c

)
foo i(c); // ~ compilation ERROR

foo c(c);

So, is a const value less useful than an immutable value?

22

Guideline 1 (deceptive!)

Observation: const values cannot be passed to functions taking
reference to immutable.

Deceptive guideline: "If a variable is never mutated, make it
immutable, not const."

23

const references

class C { // reference type
. /] ...

Inclusive: Can refer to mutable, immutable, and const.

auto m = new C;
const(C) c = m;
static assert(is (typeof(c) == const(C))); /] *

auto 1 = new immutable(C);
const(C) ¢ = 1i;

static assert(is (typeof(c) == const(C))); // *
auto ¢ = new const(C);

const(C) ¢ = c_;

static assert(is (typeof(c) == const(C))); /] *

* The actual type qualifier has been lost on c: It is always const(C)
regardless of the actual object that it refers to.

24

const reference parameters

Message to the caller:

"I shall not mutate your argument."

class C { /* ... */ }

void foo(const(C) p) {
. // ...

Accepts mutable, immutable, and const.

auto m = new C;

auto i = new immutable(C);
auto ¢ = new const(C);
foo(m);

foo(1i);

foo(c);

The actual type qualifier has been lost on p inside the function.

25

immutable references

Exclusive: Can refer to only immutable.

immutable(C) 10
immutable(C) il
immutable(C) i2

new C;
new immutable(C);
new const(C);

// - compilation ERROR
// « compilation ERROR

26

immutable reference parameters

Message to the caller:

"I shall not mutate your argument but you must not mutate it either."

void foo(immutable(C) c) {
) // ...

Accepts only immutable:

auto m = new C;

auto 1 = new immutable(C);

auto ¢ = new const(C);

foo(m); // « compilation ERROR
foo(1);

foo(c); // - compilation ERROR

Guideline 2 (deceptive!)

Observation: const reference parameters are inclusive and immutable
ones are exclusive.

Deceptive guideline: "If a reference parameter is not going to be
mutated by the function, make it const, not immutable."

void prettyPrint(const(char)[] str) { /* ... */ }
void main()
{
char[] m;
string 1i; // ('string' is the same as immutable(char)[])
const(char)[] c;
prettyPrint(m);
prettyPrint(1i);
prettyPrint(c);
}

immutable reference would be limiting:

// Would not accept char[] or const(char)][]
void prettyPrint(string str) { /* ... */ }

28

Guideline 2 is deceptive (1)

Unfortunately, const erases the actual type qualifier.

When the function needs to pass the parameter to an immutable
reference, it must make a copy it:

import std.conv;

void usefulFunction(string str) { /* ... */ }
void prettyPrint(const(char)[] str) {

/] ...

usefulFunction(str); /] <«

usefulFunction(to!string(str)); /* <« compiles but sometimes
the copy is unnecessary */

}

A template solution is wordy and may increase the size of the
program:

import std.conv;
import std.traits;

void prettyPrint(T) (T str)
if (isSomeString!T)
{

/] ...
usefulFunction(to!string(str)); // no-op if already immutable

http://ddili.org

29

http://ddili.org

Guideline 2 is deceptive (2)

Programming convenience brings runtime cost:

struct Archiver {
string fileName;

this(const(char)[] fileName) {
this.fileName = fileName.idup; /* unnecessary if the
arg is already immutable */

}

~this() {
// ... use this.fileName ...
}

char[] m;
string 1i;
const(char)[] c;

// Convenient:

Archiver(m);

Archiver(i); // unnecessarily expensive
Archiver(c);

30

Guideline 2 is deceptive (2)
(a compromise)

Take reference to immutable:

struct Archiver {
string fileName;

this(string fileName) {

this.fileName = fileName; // Nno copy necessary
}
~this() {
// ... use this.fileName ...
}
}
/] ...
char[] m;
string 1i;

const(char)[] c;

Archiver(m.idup); // copied by the caller
Archiver(i); // no cost
Archiver(c.idup); // copied by the caller

A worry: Some information leaks out. (Note that reference to
const does not have this issue.)

* No big deal: In D, the callee asks a favor from the caller: "I need
an immutable anyway; please make a copy yourself if you have
to."

Guideline 2 (revised)

"Make the parameter reference to immutable if that is how you will
use it anyway. It is fine to ask a favor from the caller."

32

http://ddili.org

Guideline 1 (again)

Deceptive guideline: "If a variable is never mutated, make it
immutable, not const."

struct MyInt {
int 1i;
}

void main() {
auto m = MyInt(42);
immutable i = m; // so far so good

}

Let's imagine that the library adds a mutable indirection in the future:

struct MyInt {
int 1;
private int[] history;
/] ...

}

void main() {
auto m = MyInt(42);

immutable i = m; // - compilation ERROR
}

So, perhaps const is better after all:

const i = m; // now compiles

33

Guideline 1 (revised)

"If a variable is never mutated, make it const, not immutable."

Will it work with functions that take immutable reference?
Options:

 If safe, efficiently convert const references to immutable by
assumeUnique (no copy made):

void foo(immutable(MyInt)[] p) { /* ... */ }

I oo

const(MyInt)

[1 c;
c ~= MyInt(42);

auto 1 = assumeUnique(c);
foo(i);
assert(c is null); // at the expense of losing 'c'

» If not safe, make an immutable copy and pass it to the function.

* (Avoid!) If safe, reach for cast momentarily (no copy made):

foo(cast(immutable(MyInt)[])c);

34

Return mutable value (guideline 3)

"Return mutable if the returned value is actually mutable."

Why prevent the caller from mutating a freshly made mutable result?

dstring foo() {
dstring result;
result ~= 'a‘';
return result;

/0 550

auto s = foo();

s[0] = 'A"; // - compilation ERROR

Returning mutable would be more useful:

dchar[] foo() {
dchar[] result;
result ~= 'a';
return result;

70 oo

auto s = foo();
s[O0] = 'A'; // now compiles

35

Return value being used as immutable

On the other hand, a mutable result would be inconvenient if the
caller needed immutable to begin with:

dchar[] foo() { /* ... */ }
/] ...
dstring imm = foo(); // - EOMPIUETICNNERROR

Options:

 The return value of a pure function can be implicitly convertible
to immutable:

pure dchar[] foo() { /* ... */ }
/] ...

dstring imm = foo(); // now compiles

* Document that calling assumeUnique on the result would be safe:

/* This function returns a unique string. */
dchar[] foo() { /* ... */ }

40 anc

auto m = foo();
immutable i = assumeUnique(m);
assert(m is null);

36

Construction syntax

Which construction syntax to use?

immutable sO@ = S(42); // type qualifier

Type qualifiers can be used as type constructors to "build a new type
from an existing one". The following line has a subtle semantic
difference from the previous one:

auto sl = immutable(S) (42); // type constructor

37

Guideline 4

"Prefer the type constructor syntax."

38

Tools

Here are some tools that help with defining a struct:

struct S {
int[] data;

this(string s) {
data.length = 42;
}

this(this) {
// post-blit to make a correction. e.g.
data = data.dup;

}

this(S rhs) {
// 'rhs' is a copy of the argument; do move...
}

this(ref const(S) rhs) {
// 'rhs' is an lvalue; do copy...

}

ref S opAssign(S rhs) {
// 'rhs' is a copy of the argument; swap with this...
return this;

}

ref S opAssign(ref const(S) rhs) {

// 'rhs' is an lvalue; copy to this and destroy old state ...

return this;

http://ddili.org

Summary

We would like to have simple guidelines that help with day-to-day
programming.

Here are a few:
1. If a variable is never mutated, make it const, not immutable.

2. Make the parameter reference to immutable if that is how you
will use it anyway. It is fine to ask a favor from the caller.

3. Prefer returning mutable reference if the state is mutable to
begin with.

4. Prefer type constructor syntax to type qualifier syntax.

40

	Copy and Move Semantics
	in the

	D Programming Language
	Ali Çehreli
	DConf 2013
	Inroduction
	Idioms of other languages may not be applicable
	Some definitions
	Value semantics versus reference semantics
	Lvalues versus rvalues
	Lvalues
	Rvalues

	Rvalues cannot be bound even to const references
	Type qualifiers
	User-defined types in various languages
	struct versus class in D
	Fundamental object operations
	Construction
	Mutation (optional)
	Destruction (not always)

	D support for fundamental operations
	Default class semantics
	User-defined class semantics
	Copying a struct objectThe postblit function
	struct semantics forlvalue on the right-hand side
	The assignment algorithm forlvalue on the right-hand side
	struct semanticsfor rvalue on the right-hand side
	The assignment algorithm forrvalue on the right-hand side
	immutable values
	const values
	const versus immutable values
	Guideline 1 (deceptive!)
	const references
	const reference parameters
	immutable references
	immutable reference parameters
	Guideline 2 (deceptive!)
	Guideline 2 is deceptive (1)
	Guideline 2 is deceptive (2)
	Guideline 2 is deceptive (2)(a compromise)
	Guideline 2 (revised)
	Guideline 1 (again)
	Guideline 1 (revised)
	Return mutable value (guideline 3)
	Return value being used as immutable
	Construction syntax
	Guideline 4
	Tools
	Summary

