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Inroduction

e Basic concepts
o User-defined types
o Fundamental operations
o Immutability

» A search of idioms and guidelines



Idioms of other languages may not be applicable

http://ddili.org

Two C++ guidelines:
e "Make everything const until you can't."

» "Pass objects by reference if they are expensive to copy."

// C++
MyInt average(const MyInt & lhs, const MyInt & rhs);
const MyInt result = average(var, MyInt(1l));

const taking(result);

May not be applicable in D:

// D

MyInt average(ref const(MyInt) lhs, ref const(MyInt) rhs)

const result = average(var, MyInt(1l)); // « _
// May fail in the future due to a change in MylInt

immutable taking(result);

// May fail in the future
immutable imm = var;



Some definitions

 Type semantics

o Value semantics

o Reference semantics
e Kinds of values

o lvalue (left-hand side value)

o rvalue (right-hand side value)
* Type qualifiers

o mutable

o immutable

o const

(shared is out of the scope of this presentation.)



Value semantics versus reference semantics

Easy to distinguish by the behavior of the = operator.

 Value semantics: Variables represent separate states

a = b;
assert(a == b);
a.mutate();
assert(a !'= b); // separate objects
a b
R +---  --- +------- +---
| state | | state |
R R +---  --- +------- +---

* Reference semantics: Variables are handles to the same state

a =b;
assert(a == b);
a.mutate();
assert(a == b); // two handles to the same object
a b
N +--- --- F------- +---  --- N +---
| state | | | | . |
ceefamcen--- +--- et t--- et e I
A I
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Lvalues versus rvalues

Lvalues

e can be on both sides of an assignment operation
e can have addresses
e can be bound to a reference

Simple example: "Named variables are lvalues."

Rvalues
* cannot be on the left-hand side of an assignment operation
e cannot have addresses
» cannot be bound to a reference
Simple example: "Literals and temporary variables are rvalues."

int foo() { return 1; } // foo's return value is an rvalue
void bar(ref const(int) 1) {}
/] ...
foo() = 2; // <
int * p = &(foo()); // <
bar(foo()); // <

http://ddili.



Rvalues cannot be bound even to const

references

struct S
{}
void foo(ref const(S) p) {

/* 00 X/
}
/] ...

foo(S());  // « CompillationNERROR

See http://wiki.dlang.org/DIPs and http://forum.dlang.org/ for frequent
improvement requests for allowing this.


http://wiki.dlang.org/DIPs
http://forum.dlang.org/

Type qualifiers

There are three kinds of mutability:
e Mutable: The state can be mutated (the default; no keyword)
 immutable: The state never mutates

e const: The state is not mutated through this reference

Then there is the wildcard:

* inout: Placeholder for the previous three (compiled as const).

Significant: Both immutable and const are transitive. The entire
state that is reachable through a variable is also immutable or const,
respectively.



User-defined types in various languages

Language struct class
C value -
C++ value value
Java - reference
C# value reference

D value reference



struct versus class in D

D structs are somewhere between C structs and C++ structs.

struct

* Value type

Scoped lifetime, allowing the RAII idiom
No OOP

Layout and alignment control of members

* more...

class
» Reference type
* Garbage collected
* Supports OOP

* more...
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Fundamental object operations

Construction

 From scratch

» As a copy of another object

By moving from an rvalue
Mutation (optional)

* Incrementally

 As a whole

o By assigning from another object (copy new state + destroy
old state)

o By swapping with an rvalue

Destruction (not always)
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D support for fundamental operations

Operation

Construct from scratch

Construct as a copy

Construct by moving from an rvalue

Mutate incrementally

Mutate as a whole by assigning from an Ilvalue
Mutate as a whole by swapping with an rvalue
Destroy

* Depends on whether the object is scoped or dynamic;
and if dynamic, whether the runtime has decided to destroy it.

N/A: Class objects are never rvalues.
Not their values, but their handles appear in expressions.

http://ddili.org

struct

automatic
automatic
automatic
automatic
automatic
automatic
automatic*

class

automatic
user-defined
N/A
automatic
user-defined
N/A
automatic*
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Default class semantics

No state mutation.

 Copy syntax: A class variable starts its life as an additional
reference to an existing garbage-collected class object.

auto b = a; // b starts life as another handle
// to a's object
assert(b is a);

 Assignment syntax: A class variable disassociates from its object
and becomes a handle to another object.

a=c¢; // a 1s now another handle
// to c's object (not b's anymore)

assert(a is c);
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User-defined class semantics

One possibility:

class C {

// ...
inout(C) dup() inout {
// ... make a copy ...
return new inout(C)(/* ... */);

}

// (Not a common operation.)
void takeOver(C rhs) {

// ... move the state of rhs to this object ...
}
auto m = new C;
auto i = new immutable(C);
auto ¢ = new const(C);
auto m dup = m.dup();
auto i dup = i.dup();
auto c dup = c.dup();

// 1inout produces correct types

static assert(is(typeof(m dup) == C));

static assert(is(typeof(i dup) == immutable(C)));
static assert(is(typeof(c dup) == const(C)));

m.takeOver(m dup);
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Copying a struct object
The postblit function

struct objects are copied automatically by the following algorithm:

1. Bit-copy from source to destination (aka blit (bit level transfer))

(This is so fundamental that self-referencing structs are not valid
in D.)

2. If defined, execute the post-blit function of the type (presumably
to make corrections to the copied object)

struct S {
int[] data;

this(this) {
data = data.dup;
}

40 anc
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struct semantics for
Ivalue on the right-hand side

 Copy syntax: An object starts its life as a copy of an existing
object.

auto b = a; // copy: 'b' starts life as a copy of 'a’
assert(b is a);

 Assignment syntax: An object becomes a copy of another object.
The old state on the left-hand side gets destroyed.

b = c; /* copy + destroy: 'b' is now a copy of 'c';
the old 'b' is destroyed */
assert(b is c);
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The assignment algorithm for
Ivalue on the right-hand side

auto src = S();
dst = src; // right-hand side is an lvalue

The algorithm is efficient and exception safe:

// Equivalent pseudo-code

{
// Make an actual copy of src (maybe expensive and may throw)
auto tmp €deep-copy€ src;
auto dst <<bit-swap= tmp;

} // 'tmp' destroys the old state here

This is an improvement over C++, where the default behavior of
assignment does not have the strong exception safety guarantee.

http://ddili.org 17



struct semantics
for rvalue on the right-hand side

// The return value is an rvalue
S foo() { /* ... */ }

 Copy syntax: An object starts its life by a bit-copy of the rvalue
and the rvalue's destruction is elided.

auto a = foo(); /* move: 'a' starts life with the state
of the returned object */

 Assignment syntax: The two states are effectively swapped.

a = foo(); /* swap: 'a' takes over the state of the
right-hand side object */

18



The assignment algorithm for
rvalue on the right-hand side

dst = foo(); // right-hand side is an rvalue

// Equivalent pseudo-code

{
dst <<&bit-swap=> rvalue;

} // 'rvalue' destroys the old state here

19



immutable values

immutable i
immutable s

 Deep guarantee: Any state that is accessible through this variable
is immutable as well.

* Bonus: Is implicitly shared (no need to lock in multi-threaded
code).

Can be copied from mutable and const:

auto m = 42;
immutable im = m; // automatic copy from mutable int

const ¢ = 43;
immutable ic = c; // automatic copy from const(int)

This slide is too optimistic because there is no mutable indirection
here.

http://ddili.org
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const values

const c
const s

42;
S(1);

 Deep guarantee: No state that is accessible through this variable
can be modified

* (no compatibility with shared)

Can be copied from mutable and immutable:

auto m = 42

const cm = m; // automatic copy from mutable int

immutable i = 43;
const ci = i; // automatic copy from immutable(int)

21



const versus 1immutable values

void foo byValue(int i) {/% ... ¥/}
void foo i(ref immutable(int) i) { /* ... */ }
void foo c(ref const(int) i) {/* ... ¥/}
/] ...

immutable i = 1;
foo byValue(i);
foo 1i(1i);
foo c(1i);

const ¢ = 1;
foo byValue(c

)
foo i(c); // ~ compilation ERROR

foo c(c);

So, is a const value less useful than an immutable value?

22



Guideline 1 (deceptive!)

Observation: const values cannot be passed to functions taking
reference to immutable.

Deceptive guideline: "If a variable is never mutated, make it
immutable, not const."
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const references

class C { // reference type
. /] ...

Inclusive: Can refer to mutable, immutable, and const.

auto m = new C;
const(C) c = m;
static assert(is (typeof(c) == const(C))); /] *

auto 1 = new immutable(C);
const(C) ¢ = 1i;

static assert(is (typeof(c) == const(C))); // *
auto ¢ = new const(C);

const(C) ¢ = c_;

static assert(is (typeof(c) == const(C))); /] *

* The actual type qualifier has been lost on c: It is always const(C)
regardless of the actual object that it refers to.

24



const reference parameters

Message to the caller:

"I shall not mutate your argument."

class C { /* ... */ }

void foo(const(C) p) {
. // ...

Accepts mutable, immutable, and const.

auto m = new C;

auto i = new immutable(C);
auto ¢ = new const(C);
foo(m);

foo(1i);

foo(c);

The actual type qualifier has been lost on p inside the function.

25



immutable references

Exclusive: Can refer to only immutable.

immutable(C) 10
immutable(C) il
immutable(C) i2

new C;
new immutable(C);
new const(C);

// - compilation ERROR
// « compilation ERROR

26



immutable reference parameters

Message to the caller:

"I shall not mutate your argument but you must not mutate it either."

void foo(immutable(C) c) {
) // ...

Accepts only immutable:

auto m = new C;

auto 1 = new immutable(C);

auto ¢ = new const(C);

foo(m); // « compilation ERROR
foo(1);

foo(c); // - compilation ERROR



Guideline 2 (deceptive!)

Observation: const reference parameters are inclusive and immutable
ones are exclusive.

Deceptive guideline: "If a reference parameter is not going to be
mutated by the function, make it const, not immutable."

void prettyPrint(const(char)[] str) { /* ... */ }
void main()
{
char[] m;
string 1i; // ('string' is the same as immutable(char)[])
const(char)[] c;
prettyPrint(m);
prettyPrint(1i);
prettyPrint(c);
}

immutable reference would be limiting:

// Would not accept char[] or const(char)][]
void prettyPrint(string str) { /* ... */ }

28



Guideline 2 is deceptive (1)

Unfortunately, const erases the actual type qualifier.

When the function needs to pass the parameter to an immutable
reference, it must make a copy it:

import std.conv;

void usefulFunction(string str) { /* ... */ }
void prettyPrint(const(char)[] str) {

/] ...

usefulFunction(str); /] <«

usefulFunction(to!string(str)); /* <« compiles but sometimes
the copy is unnecessary */

}

A template solution is wordy and may increase the size of the
program:

import std.conv;
import std.traits;

void prettyPrint(T) (T str)
if (isSomeString!T)
{

/] ...
usefulFunction(to!string(str)); // no-op if already immutable

http://ddili.org
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Guideline 2 is deceptive (2)

Programming convenience brings runtime cost:

struct Archiver {
string fileName;

this(const(char)[] fileName) {
this.fileName = fileName.idup; /* unnecessary if the
arg is already immutable */

}

~this() {
// ... use this.fileName ...
}

char[] m;
string 1i;
const(char)[] c;

// Convenient:

Archiver(m);

Archiver(i); // unnecessarily expensive
Archiver(c);

30



Guideline 2 is deceptive (2)
(a compromise)

Take reference to immutable:

struct Archiver {
string fileName;

this(string fileName) {

this.fileName = fileName; // Nno copy necessary
}
~this() {
// ... use this.fileName ...
}
}
/] ...
char[] m;
string 1i;

const(char)[] c;

Archiver(m.idup); // copied by the caller
Archiver(i); // no cost
Archiver(c.idup); // copied by the caller

A worry: Some information leaks out. (Note that reference to
const does not have this issue.)

* No big deal: In D, the callee asks a favor from the caller: "I need
an immutable anyway; please make a copy yourself if you have
to."



Guideline 2 (revised)

"Make the parameter reference to immutable if that is how you will
use it anyway. It is fine to ask a favor from the caller."
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Guideline 1 (again)

Deceptive guideline: "If a variable is never mutated, make it
immutable, not const."

struct MyInt {
int 1i;
}

void main() {
auto m = MyInt(42);
immutable i = m; // so far so good

}

Let's imagine that the library adds a mutable indirection in the future:

struct MyInt {
int 1;
private int[] history;
/] ...

}

void main() {
auto m = MyInt(42);

immutable i = m; // - compilation ERROR
}

So, perhaps const is better after all:

const i = m; // now compiles
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Guideline 1 (revised)

"If a variable is never mutated, make it const, not immutable."

Will it work with functions that take immutable reference?
Options:

 If safe, efficiently convert const references to immutable by
assumeUnique (no copy made):

void foo(immutable(MyInt)[] p) { /* ... */ }

I oo

const(MyInt)

[1 c;
c ~= MyInt(42);

auto 1 = assumeUnique(c);
foo(i);
assert(c is null); // at the expense of losing 'c'

» If not safe, make an immutable copy and pass it to the function.

* (Avoid!) If safe, reach for cast momentarily (no copy made):

foo(cast(immutable(MyInt)[])c);

34



Return mutable value (guideline 3)

"Return mutable if the returned value is actually mutable."

Why prevent the caller from mutating a freshly made mutable result?

dstring foo() {
dstring result;
result ~= 'a‘';
return result;

/0 550

auto s = foo();

s[0] = 'A"; // - compilation ERROR

Returning mutable would be more useful:

dchar[] foo() {
dchar[] result;
result ~= 'a';
return result;

70 oo

auto s = foo();
s[O0] = 'A'; // now compiles
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Return value being used as immutable

On the other hand, a mutable result would be inconvenient if the
caller needed immutable to begin with:

dchar[] foo() { /* ... */ }
/] ...
dstring imm = foo();  // - EOMPIUETICNNERROR

Options:

 The return value of a pure function can be implicitly convertible
to immutable:

pure dchar[] foo() { /* ... */ }
/] ...

dstring imm = foo(); // now compiles

* Document that calling assumeUnique on the result would be safe:

/* This function returns a unique string. */
dchar[] foo() { /* ... */ }

40 anc

auto m = foo();
immutable i = assumeUnique(m);
assert(m is null);

36



Construction syntax

Which construction syntax to use?

immutable sO@ = S(42); // type qualifier

Type qualifiers can be used as type constructors to "build a new type
from an existing one". The following line has a subtle semantic
difference from the previous one:

auto sl = immutable(S) (42); // type constructor

37



Guideline 4

"Prefer the type constructor syntax."

38



Tools

Here are some tools that help with defining a struct:

struct S {
int[] data;

this(string s) {
data.length = 42;
}

this(this) {
// post-blit to make a correction. e.g.
data = data.dup;

}

this(S rhs) {
// 'rhs' is a copy of the argument; do move...
}

this(ref const(S) rhs) {
// 'rhs' is an lvalue; do copy...

}

ref S opAssign(S rhs) {
// 'rhs' is a copy of the argument; swap with this...
return this;

}

ref S opAssign(ref const(S) rhs) {

// 'rhs' is an lvalue; copy to this and destroy old state ...

return this;

http://ddili.org



Summary

We would like to have simple guidelines that help with day-to-day
programming.

Here are a few:
1. If a variable is never mutated, make it const, not immutable.

2. Make the parameter reference to immutable if that is how you
will use it anyway. It is fine to ask a favor from the caller.

3. Prefer returning mutable reference if the state is mutable to
begin with.

4. Prefer type constructor syntax to type qualifier syntax.

40
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