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My experience with Solar Photovotaics
 - 1995 : Spacecraft and Hippies
 - 2007 : NYSE, $Billion
 - 2011 : Commodity market

Early adopters show where your guesses were wrong!
 

from research mode to production
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Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally
 - Serving 50+ markets on 6 continents
 - Offices in 9 countries
 - 100+ employees, 25+ nationalities

Profitable
 - Growth based entirely on revenue

sociomantic labs gmbh
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User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder gets to show their ad in the space

Bids must be placed within 50 milliseconds
 - Including internet latency

Billions of auctions per day

real-time bidding
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big data

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
 - and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

50 milliseconds (minus net latency) to place a bid
 - Typical hard disk seek time is 9 ms
 - For most bids we achieve <= 2 ms
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Features to drop from C++ 
 - C source code compatibility
 - Link compatibility with C++
 - Multiple inheritance
 - Preprocessor
 - Templates

-- Walter Bright, “D Spec Draft 1”, (Aug 2001)

d metaprogramming in 2001
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Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow
 - Fast compilation is addictive!

Why isn’t it fast yet?
 - Because of the history
 - Many unintended dependencies
 - Front-end must be in a valid state!
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end

we’re hiring!

www.sociomantic.com


