
1

metaprogramming in the real world
don clugston

maY 2013

2

from research mode to production

My experience with Solar Photovotaics

3

My experience with Solar Photovotaics
 - 1995 : Spacecraft and Hippies

from research mode to production

4

My experience with Solar Photovotaics
 - 1995 : Spacecraft and Hippies
 - 2007 : NYSE, $Billion

from research mode to production

5

My experience with Solar Photovotaics
 - 1995 : Spacecraft and Hippies
 - 2007 : NYSE, $Billion
 - 2011 : Commodity market

from research mode to production

6

My experience with Solar Photovotaics
 - 1995 : Spacecraft and Hippies
 - 2007 : NYSE, $Billion
 - 2011 : Commodity market

Early adopters show where your guesses were wrong!

from research mode to production

7

Founded 2009, Berlin by 3 PhDs

sociomantic labs gmbh

8

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

sociomantic labs gmbh

9

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based

sociomantic labs gmbh

10

sociomantic labs gmbh

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

11

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally

sociomantic labs gmbh

12

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally
 - Serving 50+ markets on 6 continents

sociomantic labs gmbh

13

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally
 - Serving 50+ markets on 6 continents
 - Offices in 9 countries

sociomantic labs gmbh

14

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally
 - Serving 50+ markets on 6 continents
 - Offices in 9 countries
 - 100+ employees, 25+ nationalities

sociomantic labs gmbh

15

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally
 - Serving 50+ markets on 6 continents
 - Offices in 9 countries
 - 100+ employees, 25+ nationalities

Profitable

sociomantic labs gmbh

16

Founded 2009, Berlin by 3 PhDs

Real-time bidding for online advertising

Technology based
 - Core technology is 100% D

Expanding globally
 - Serving 50+ markets on 6 continents
 - Offices in 9 countries
 - 100+ employees, 25+ nationalities

Profitable
 - Growth based entirely on revenue

sociomantic labs gmbh

17

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder is notified

Winner transmits image to user

Entire auction takes < 100 milliseconds

real-time bidding

18

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder is notified

Winner transmits image to user

Entire auction takes < 100 milliseconds

real-time bidding

19

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder is notified

Winner transmits image to user

Entire auction takes < 100 milliseconds

real-time bidding

20

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder gets to show their ad in the space

Winner transmits image to user

Entire auction takes < 100 milliseconds

real-time bidding

21

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder gets to show their ad in the space

Bids must be placed within 50 milliseconds

real-time bidding

22

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder gets to show their ad in the space

Bids must be placed within 50 milliseconds
 - Including internet latency

real-time bidding

23

User visits web page

While it loads, website auctions an ad space

We bid on behalf of our advertisers

Highest bidder gets to show their ad in the space

Bids must be placed within 50 milliseconds
 - Including internet latency

Billions of auctions per day

real-time bidding

24

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 -Terabytes/day

Some form of NoSQL database mandatory
 -Relational databases too slow + don’t scale

Latency (rather than speed) is king

Two approaches
 -1 Off-the shelf product + workarounds
 -2 Custom, intrinsically fast solution

big data

25

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 -Terabytes/day

Some form of NoSQL database mandatory
 -Relational databases too slow + don’t scale

Latency (rather than speed) is king

Two approaches
 -1 Off-the shelf product + workarounds
 -2 Custom, intrinsically fast solution

big data

26

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Some form of NoSQL database mandatory
 -Relational databases too slow + don’t scale

Latency (rather than speed) is king

Two approaches
 -1 Off-the shelf product + workarounds
 -2 Custom, intrinsically fast solution

big data

27

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale
 -Relational databases too slow + don’t scale

Latency (rather than speed) is king

Two approaches
 -1 Off-the shelf product + workarounds
 -2 Custom, intrinsically fast solution

big data

28

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product

Two approaches
 -1 Off-the shelf product + workarounds
 -2 Custom, intrinsically fast solution

big data

29

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
 - and works around the speed bottlenecks

big data

30

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
 - and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

big data

31

big data

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
 - and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

50 milliseconds (minus net latency) to place a bid

32

big data

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
 - and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

50 milliseconds (minus net latency) to place a bid
 - Typical hard disk seek time is 9 ms

33

big data

Must calculate how much this ad space is worth

Bid accuracy improves with more data
 - Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
 - and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

50 milliseconds (minus net latency) to place a bid
 - Typical hard disk seek time is 9 ms
 - For most bids we achieve <= 2 ms

34

Tango-based runtime (modified), own libraries

’Swarm’ Distributed hash table

All processes stream-based and completely scalable

Avoid ALL heap activity

Keep ALL data in memory

Data stored in D format, no conversion

Embarassingly parallel (no central server)

our technologY stack

35

Tango-based runtime (modified), own libraries
 - Avoid ALL heap activity

our technologY stack

36

Tango-based runtime (modified), own libraries
 - Avoid ALL heap activity

Fiber-based concurrency (not threads)

our technologY stack

37

Tango-based runtime (modified), own libraries
 - Avoid ALL heap activity

Fiber-based concurrency (not threads)

‘Swarm’ In-memory Distributed Hash Table

our technologY stack

38

Tango-based runtime (modified), own libraries
 - Avoid ALL heap activity

Fiber-based concurrency (not threads)

‘Swarm’ In-memory Distributed Hash Table

Data stored in D format, no conversion

our technologY stack

39

Tango-based runtime (modified), own libraries
 - Avoid ALL heap activity

Fiber-based concurrency (not threads)

‘Swarm’ In-memory Distributed Hash Table

Data stored in D format, no conversion

All processes stream-based and completely scalable

our technologY stack

40

Direct binding to C libraries

Array slices
 -Avoid heap activity, but stay correct

Painless compile-time programming
 -eg, for serialization

whY d?

41

Direct binding to C libraries

Array slices
 -Avoid heap activity, but stay correct

Painless compile-time programming
 -eg, for serialization

whY d?

42

Direct binding to C libraries

Array slices
 - Avoid heap activity, but stay correct

Painless compile-time programming
 -eg, for serialization

whY d?

43

Direct binding to C libraries

Array slices
 - Avoid heap activity, but stay correct

Painless compile-time programming
 -eg, for serialization

whY d?

44

Direct binding to C libraries

Array slices
 - Avoid heap activity, but stay correct

Painless compile-time programming
 - eg, for serialization

whY d?

45

Features to drop from C++
 - C source code compatibility
 - Link compatibility with C++
 - Multiple inheritance
 - Preprocessor
 - Templates

-- Walter Bright, “D Spec Draft 1”, (Aug 2001)

d metaprogramming in 2001

46

Templates!

static if, static assert

Some reflection -- is() expressions

Still defensive w.r.t C++
 -“If a language can capture 90% of the power of C++ with 10% of
 its complexity, I argue that is a worthwhile tradeoff.” - DMD FAQ

d metaprogramming in 2005

47

Templates!

static if, static assert

Some reflection -- is() expressions

Still defensive w.r.t C++
 -“If a language can capture 90% of the power of C++ with 10% of
 its complexity, I argue that is a worthwhile tradeoff.” - DMD FAQ

d metaprogramming in 2005

48

Templates!

static if, static assert

Some reflection -- is() expressions

Still defensive w.r.t C++
 -“If a language can capture 90% of the power of C++ with 10% of
 its complexity, I argue that is a worthwhile tradeoff.” - DMD FAQ

d metaprogramming in 2005

49

Templates!

static if, static assert

Some reflection -- is() expressions

Still defensive w.r.t C++
 -“If a language can capture 90% of the power of C++ with 10% of
 its complexity, I argue that is a worthwhile tradeoff.” - DMD FAQ

d metaprogramming in 2005

50

Templates!

static if, static assert

Some reflection -- is() expressions

Still defensive w.r.t C++
 - “If a language can capture 90% of the power of C++ with 10% of
 its complexity, I argue that is a worthwhile tradeoff.” - DMD FAQ

d metaprogramming in 2005

51

Improved constant folding

Compile Time Function Execution (CTFE)

string mixins

stringof

d metaprogramming in 2007

52

Improved constant folding

Compile Time Function Execution (CTFE)

string mixins

stringof

d metaprogramming in 2007

53

Improved constant folding

Compile Time Function Execution (CTFE)

string mixins

stringof

d metaprogramming in 2007

54

Improved constant folding

Compile Time Function Execution (CTFE)

string mixins

stringof

d metaprogramming in 2007

55

Template constraints

__traits (just as ugly as is() expressions!)

alias this

opDispatch

Dramatic implementation improvements

d metaprogramming in 2013

56

Template constraints

__traits (just as ugly as is() expressions!)

alias this

opDispatch

Dramatic implementation improvements

d metaprogramming in 2013

57

Template constraints

__traits (just as ugly as is() expressions!)

alias this

opDispatch

Dramatic implementation improvements

d metaprogramming in 2013

58

Template constraints

__traits (just as ugly as is() expressions!)

alias this

opDispatch

Dramatic implementation improvements

d metaprogramming in 2013

59

Template constraints

__traits (just as ugly as is() expressions!)

alias this

opDispatch

Dramatic implementation improvements

d metaprogramming in 2013

60

We got here by incremental improvements

Programmers follow the same learning curve

Metaprogramming is an unexpected strength of D

We still have some detritus

whY the historY matters

61

We got here by incremental improvements

Programmers follow the same learning curve

Metaprogramming is an unexpected strength of D

We still have some detritus

whY the historY matters

62

We got here by incremental improvements

Programmers follow the same learning curve

Metaprogramming is an unexpected strength of D

We still have some detritus

whY the historY matters

63

We got here by incremental improvements

Programmers follow the same learning curve

Metaprogramming is an unexpected strength of D

We still have some detritus

whY the historY matters

64

(Benefit - Cost) / Cost

At what time does this become positive?

The time until you obtain benefit can be as important
as the cost!

Benefit > Cost at t = infinity is not enough!

Who gets the benefit?

return on investment (roi)

65

(Benefit - Cost) / Cost

At what time does this become positive?

The time until you obtain benefit can be as important
as the cost!

Benefit > Cost at t = infinity is not enough!

Who gets the benefit?

return on investment (roi)

66

(Benefit - Cost) / Cost

At what time does this become positive?

The time until you obtain benefit can be as important
as the cost!

Benefit > Cost at t = infinity is not enough!

Who gets the benefit?

return on investment (roi)

67

(Benefit - Cost) / Cost

At what time does this become positive?

The time until you obtain benefit can be as important
as the cost!

Benefit > Cost at t = infinity is not enough!

Who gets the benefit?

return on investment (roi)

68

(Benefit - Cost) / Cost

At what time does this become positive?

The time until you obtain benefit can be as important
as the cost!

Benefit > Cost at t = infinity is not enough!

Who gets the benefit?

return on investment (roi)

69

Language changes must NEVER break code

Except in extreme cases

backwards compatibilitY - expectation

70

Language changes must NEVER break code

Except in extreme cases

backwards compatibilitY - expectation

71

Breaking code is an up-front cost

But keeping mis-features is worse!
 -an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 -eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

72

Breaking code is an up-front cost

But keeping mis-features is worse!
 -an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 -eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

73

Breaking code is an up-front cost

But keeping mis-features is worse!
 - an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 -eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

74

Breaking code is an up-front cost

But keeping mis-features is worse!
 - an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 -eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

75

Breaking code is an up-front cost

But keeping mis-features is worse!
 - an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 -eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

76

Breaking code is an up-front cost

But keeping mis-features is worse!
 - an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 - eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

77

Breaking code is an up-front cost

But keeping mis-features is worse!
 - an on-going cost

Gratuitous name changes have very poor ROI

If the benefit is instant, any cost is OK
 - eg if it catches a bug

Breaking changes can be met with enthusiasm!

backwards compatibilitY - experience

78

Expectation
 -Easier than in C++
 -But still only used by wizards, in libraries

Experience
 -Used even in in application code!
 -Used even by new D programmers!
 -Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

79

Expectation
 - Easier than in C++
 -But still only used by wizards, in libraries

Experience
 -Used even in in application code!
 -Used even by new D programmers!
 -Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

80

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 -Used even in in application code!
 -Used even by new D programmers!
 -Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

81

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 -Used even in in application code!
 -Used even by new D programmers!
 -Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

82

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 - Used even in in application code!
 -Used even by new D programmers!
 -Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

83

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 - Used even in in application code!
 - Used even by new D programmers!
 -Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

84

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 - Used even in in application code!
 - Used even by new D programmers!
 - Entry level is very low
 -’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

85

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 - Used even in in application code!
 - Used even by new D programmers!
 - Entry level is very low
 - ’static if’ is instantly understood
 -ROI is excellent

Improves programmer morale

metaprogramming

86

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 - Used even in in application code!
 - Used even by new D programmers!
 - Entry level is very low
 - ’static if’ is instantly understood
 - ROI is excellent

Improves programmer morale

metaprogramming

87

Expectation
 - Easier than in C++
 - But still only used by wizards, in libraries

Experience
 - Used even in in application code!
 - Used even by new D programmers!
 - Entry level is very low
 - ’static if’ is instantly understood
 - ROI is excellent

Improves programmer morale

metaprogramming

88

Expectation
 -Lowest importance of any type of compiler bug

Experience
 -Make advanced features seem simpler
 -Have a pedagogic role
 -Good error messages save time.. and time is money
 -Error messages are the reason we use statically-typed languages!

error messages

89

Expectation
 - Lowest importance of any type of compiler bug

Experience
 -Make advanced features seem simpler
 -Have a pedagogic role
 -Good error messages save time.. and time is money
 -Error messages are the reason we use statically-typed languages!

error messages

90

Expectation
 - Lowest importance of any type of compiler bug

Experience
 -Make advanced features seem simpler
 -Have a pedagogic role
 -Good error messages save time.. and time is money
 -Error messages are the reason we use statically-typed languages!

error messages

91

Expectation
 - Lowest importance of any type of compiler bug

Experience
 - Make advanced features seem simpler
 -Have a pedagogic role
 -Good error messages save time.. and time is money
 -Error messages are the reason we use statically-typed languages!

error messages

92

Expectation
 - Lowest importance of any type of compiler bug

Experience
 - Make advanced features seem simpler
 - Have a pedagogic role
 -Good error messages save time.. and time is money
 -Error messages are the reason we use statically-typed languages!

error messages

93

Expectation
 - Lowest importance of any type of compiler bug

Experience
 - Make advanced features seem simpler
 - Have a pedagogic role
 - Good error messages save time.. and time is money
 -Error messages are the reason we use statically-typed languages!

error messages

94

Expectation
 - Lowest importance of any type of compiler bug

Experience
 - Make advanced features seem simpler
 - Have a pedagogic role
 - Good error messages save time.. and time is money
 - Error messages are the reason we use statically-typed languages!

error messages

95

Expectation

compile time function execution

96

Expectation

Huge win! Used everywhere

compile time function execution

97

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

compile time function execution

98

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption

compile time function execution

99

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

compile time function execution

100

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

compile time function execution

101

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow

compile time function execution

102

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow
 - Fast compilation is addictive!

compile time function execution

103

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow
 - Fast compilation is addictive!

Why isn’t it fast yet?

compile time function execution

104

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow
 - Fast compilation is addictive!

Why isn’t it fast yet?
 - Because of the history

compile time function execution

105

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow
 - Fast compilation is addictive!

Why isn’t it fast yet?
 - Because of the history
 - Many unintended dependencies

compile time function execution

106

Expectation

Huge win! Used everywhere

Subliminal metaprogramming!

Increased power will increase adoption
 - Pointers, throw exceptions, ...

Experience

CTFE hardly gets used, because it’s too slow
 - Fast compilation is addictive!

Why isn’t it fast yet?
 - Because of the history
 - Many unintended dependencies
 - Front-end must be in a valid state!

compile time function execution

107

Expectation
 -Tutorials are almost irrelevant

Experience
 -Absence of tutorials is an embarassment

tutorials

108

Expectation
 - Tutorials are almost irrelevant

Experience
 -Absence of tutorials is an embarassment

tutorials

109

Expectation
 - Tutorials are almost irrelevant

Experience
 -Absence of tutorials is an embarassment

tutorials

110

Expectation
 - Tutorials are almost irrelevant

Experience
 - Absence of tutorials is an embarassment

tutorials

111

Much smaller problem than expected

Template bugs rarely encountered in D1

64 bit code generation a nightmare
 -But mostly a one-off cost borne by us

Otherwise, IDE bugs much worse

compiler bugs

112

Much smaller problem than expected

Template bugs rarely encountered in D1

64 bit code generation a nightmare
 -But mostly a one-off cost borne by us

Otherwise, IDE bugs much worse

compiler bugs

113

Much smaller problem than expected

Template bugs rarely encountered in D1

64 bit code generation a nightmare
 -But mostly a one-off cost borne by us

Otherwise, IDE bugs much worse

compiler bugs

114

Much smaller problem than expected

Template bugs rarely encountered in D1

64 bit code generation a nightmare
 - But mostly a one-off cost borne by us

Otherwise, IDE bugs much worse

compiler bugs

115

Much smaller problem than expected

Template bugs rarely encountered in D1

64 bit code generation a nightmare
 - But mostly a one-off cost borne by us

Otherwise, IDE bugs much worse

compiler bugs

123

D is moving out of research mode
 -We can no longer ignore implementation issues

A Return-On-Investment model is useful
 -D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 -D does deliver ROI for Sociomantic Labs
 -But not yet in all areas

summarY

124

D is moving out of research mode
 - We can no longer ignore implementation issues

A Return-On-Investment model is useful
 -D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 -D does deliver ROI for Sociomantic Labs
 -But not yet in all areas

summarY

125

D is moving out of research mode
 - We can no longer ignore implementation issues

A Return-On-Investment model is useful
 -D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 -D does deliver ROI for Sociomantic Labs
 -But not yet in all areas

summarY

126

D is moving out of research mode
 - We can no longer ignore implementation issues

A Return-On-Investment model is useful
 - D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 -D does deliver ROI for Sociomantic Labs
 -But not yet in all areas

summarY

127

D is moving out of research mode
 - We can no longer ignore implementation issues

A Return-On-Investment model is useful
 - D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 -D does deliver ROI for Sociomantic Labs
 -But not yet in all areas

summarY

128

D is moving out of research mode
 - We can no longer ignore implementation issues

A Return-On-Investment model is useful
 - D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 - D does deliver ROI for Sociomantic Labs
 -But not yet in all areas

summarY

129

D is moving out of research mode
 - We can no longer ignore implementation issues

A Return-On-Investment model is useful
 - D must deliver value in the near-term

Metaprogramming is a strength of D in the real world
 - D does deliver ROI for Sociomantic Labs
 - But not yet in all areas

summarY

130

end

we’re hiring!

www.sociomantic.com

