deject: Writing Testable Code in D

Ben Gertzfield <beng@fb.com>

If you take away one thing from
this talk, make it this:

Writing tests can be easy, If you separate out your
dependencies.

2/21

Why write testable code?

Making your code testable lets us make new and
Interesting mistakes

(instead of those same old boring mistakes)

Don't live in fear of touching code you didn't write

And don't live in fear of touching code you did write...

(6 months ago)

3/21

Let's Talk Testing

When describing code, the word unit might bring to
mind:

e A single function

e Aclass

e A module (in D, a single file)

Keeping your personal definition of "unit" small is the key to
both comprehending and testing software.

4 /21

Basics of Unit Testingin D

D is the first major programming language with unit
testing built in.

Any code in aunittest { ... } block is executed
before main () when the program is compiled with dmd

-unittest

Unit tests contain logic and assert statements.
What does a basic unit test look like?

5/21

Newton Rolling Over In His Grave

Other kinds of tests

Integration tests

These exercise multiple units in concert.

Integration tests ensure that all your units are glued together
correctly.

They have larger surface area, so they fail more often and
more mysteriously when a unit misbehaves.

7/21

Other kinds of tests, cont.

End-to-end tests

These exercise the entire process from start to finish.

These are great for smoke tests to make sure a build isn't
dead on arrival.

But... they get flaky even quicker than integration tests.

Writing and maintaining end-to-end tests is expensive and
time-consuming.

8/21

Isolating dependencies for unit
tests

To make code testable, we need to isolate the actual
code from its dependencies.

"Constructor injection” requires all the dependencies
of a unit to be passed to its constructor.

Let's look at a flaky test to see why this is useful.

9/21

This is a flaky test. It will fail:

When the netw

i someone re 5 glang.org

When the filesystem is full or read-only

When | hit Control-C after waiting 30 seconds for the
test to complete

Let's make this testable

We'll use constructor injection to pass dependencies
from above.

[N
IS

What changed here?

e Pass dependencies from above to constructor
e Clearly define seams to stitch together logic and dependencies

e Avoid static methods and globals

12 /21

Let's Test This Puppy

Let's test a failure case

[N
IS

The Good, The Bad, and the
Dejected

The good
o Writing code this way makes it simple to test

The bad

o Calling the constructor with all its dependencies is annoying and
requires clients change any time the dependencies change

The dejected

o D is a modern programming language: can't it take care of these
details?

Introducing deject, dependency injection for D

15/21

The library: deject

Runtime dependency injection

BindingModuleS define map of (Typeinfo — Binding)
pairs

objectGraph analyzes graph of dependencies and
uses Linker to find and cache dependencies of

Binding$S

Manages object lifetime for singletons and other
objects with scoped lifetime

17 /21

Compile-time dependency
injection
D's compile-time introspection lets us build the object

graph at compile time

Looks for einject attribute to denote classes with
dependencies managed by object graph

Emits D mixins to define objectGraph.get!T to
construct injected type T

18 /21

One small change to make that
code injected

Turtles All the Way Down

Wrapping it up

Use pass from above to separate dependencies from
your code

Use mocks to control behavior of dependencies In
tests

Grab the source: github.com/bgertzfield/deject
Questions?

21/21

