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Introduction / Motivation



4

Introduction

■ Funkwerk Information Technologies
 HQ in Munich, Germany
 One of the market leaders in 

passenger information systems
for public transportion

■ http://www.funkwerk-itk.com 

http://www.funkwerk-itk.com/
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Motivation - Sun Microsystems rationale

■ Code conventions are important to programmers for a number 
of reasons:

 40%-80% of the lifetime cost of a piece of software goes to 
maintenance.

 Hardly any software is maintained for its whole life by the original 
author.

 Code conventions improve the readability of the software, allowing 
engineers to understand new code more quickly and thoroughly.

 If you ship your source code as a product, you need to make sure it is 
as well packaged and clean as any other product you create.

■ http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf


6

Motivation

■ Started with D (D1, Tango) in mid of 2008.
■ 05/2013 having 250kLOC D (src); 8 developers
■ Writing Clean Code → Many Code Reviews
■ Time waste and social difficulty to mark Code that violates 

(computer checkable) conventions
■ Even more difficult if conventions and their reason haven't 

been written down anywhere
■ Growing team; needed a way to effectively split knowledge 

about the conventions
■ Got Java/C++ Programmers
■ No courses or training available
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Motivation

„You cannot always hire perfect engineers.“
Walter Bright, DConf 2013
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Motivation - Teams

■ Teams need to have a common understanding of code
■ Need growth with:

 Size of team
 Distance between team members
 Cultural differences
 …

■ C++ Coding Conventions → Effective C++, C++
■ Java Coding Conventions → Oracle
■ D Coding Conventions → Effective D (anyone?)

■ C as well as C++ also define a safe subset
(e.g.: MISRA C / C++)
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Motivation – C/C++, Java, D

■ Importance for Conventions grows as languages gets more 
complex

■ D Multiparadigm Language
■ not many clean finished projects to copy from
■ not many books
■ no courses / training available
■ few rules of thumb
■ few best practices, ...

■ D is a huge toolbox, but when to use which tool?
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Our D Way
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Our D Way

■ Highly available systems that works 24/7
■ Maintenance for 10+ years
■ → Investment in code quality pays out fast
■ Agile approach for development
■ Main goal is readable, maintainable, concise code
■ Asserts and all invariants are active in release version
■ Contracts everywhere
■ Tests:

 Whitebox (unittest, dunit)
 Blackbox (Python Acceptance tests)
 Static Code Analysis
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Our D Way – OO && UML

■ Restricting to OO approach with one class/struct/interface per file
■ A class is an item with a strict boundary. e.g.: Arrays will be dupped 

at these borders.
■ We do not use Ddoc, because most important information about 

functions are not included.
 In- / Out-Constrains
 Exceptional Cases aka Throws

■ Not implementation should be documented, but interactions should 
be.

■ Therefore using UML Class Diagrams for each package
■ Codebase gets synchronized with these diagrams through Antlr, 

python, stringtemplates magic
■ Next to classes also model package dependency

→ no cyclic dependencies anymore
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Our D Way – OO && UML
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Our D Way - Whitebox Tests

■ Whitebox Test for Modules

■ Private static functions which could be tested inplace are 
tested using D-unittest-Blocks (Unit =:= Function)

■ Other tests require setups, teardowns, names (Testdox 
http://agiledox.sourceforge.net/). Need to be filtered, 
selected. For them using Dunit. (Unit =:= Class / Struct)

■ http://github.com/linkrope/dunit

http://agiledox.sourceforge.net/
http://github.com/linkrope/dunit
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Our D Way - Whitebox Tests

■ Unittests execute
 in total,
 separate and
 in every combination of 2 (prove independence)

■ Crash in Druntime for (short running) programs with 
multiple threads
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Static Code Analysis
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Static Code Analysis - AnalyzeD

■ Supporting the currently discovered conventions

■ Restricted to own D code; string mixins (version, template) not 
supported → Not supporting whole D grammar.

■ Goals:
 Explain each convention and mention why it could be 

useful to follow it
 As less as possible false positives
 No annotations for the source code
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Static Code Analysis - Categories

■ Bad Practice
■ Coding
■ Metric
■ Semantic
■ Style
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Static Code Analysis – Levels of Analysis

Source AST
Token-
stream

Semantic-
Analysis

■ Different convention checkers use different input
■ Do not completly need to parse code, also could analyze invalid files with a 

subset of the rules

e.g.: overfull lines, ... e.g.: outcommented 
code, ...

e.g.: avoid for, 
pointer, goto, public 

imports, ...

e.g.: unused code, 
unused declarations, 

...
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Static Code Analysis – Advantages in D

■ Code is already well
formalized.
Contracts are built in.

■ Developers should
use and trust these 
contracts
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Static Code Analysis – Examples – Avoid For
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Static Code Analysis – Examples – Prefer Auto
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Static Code Analysis – Examples – Unused Variables
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Static Code Analysis – Examples – Code Within Comments
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Static Code Analysis – http://analyzeD.no-ip.org/online
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Metrics
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Metrics

- growing code base
- need to find hotspots where review should be done and where 
bug clusters could hide

Similarity with other Tokensubsets / Duplicated Code

Methods:
● statements
● interface (parameters, throws)
● lines
● high cyclomatic complexity

Classes/Interfaces/Structs:
● Attributes / functions
● Constructors
● Lines
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Metrics – High Hard Limits for Metric Violations



29

Metrics – http://analyzeD.no-ip.org/metric
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D1to2
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D1to2 - Usecase

■ D1 Tango Migration to D2 Phobos
■ Highest migration effort in unittests, so mainly concentrated to 

automize that
■ Goal was to automize 80%, give the interesting 20% to the 

developer

■ Example generic rules:
 Replace char[] by string
 Replace Foo!(Bar)(baz) by Foo!Bar(baz)

■ Example Tango rules:
 Replace Tango.format(„{0}“, foo) with std.string.format(„%s“, 

foo)

■ Step by step reducing Tango Dependencies. Currently Tango just 
for Xml and Logging.
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D1to2 – http://analyzeD.no-ip.org/d1to2
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Sonar



34

Sonar – Easy Way to Start With

There are already several D projects out there;
Quality and Style are different;
sometimes even within the projects.

There is also the D-Style (http://dlang.org/dstyle.html) which 
already defines several rules.

- naming conventions
- declaration style
- one statement per line
- spaces instead of tabs; multiple of 4
- braces on a single line
- avoid overfull lines

We are going to host a sonar instance for every D project which 
is willing to.

http://dlang.org/dstyle.html
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Sonar – How to introduce static code analysis?

Introduction of new conventions into existing code base difficult:
■ just analyzing increments
■ Analyzing whole codebase and increase number of active 

conventions

Sonar is an open source web based solution for quality checks 
on software for many languages; Continuous Quality Inspection
■ Wrote a D Plugin for Sonar

http://www.sonarsource.org/ 
■ Sonar enables project specific settings for code analysis; 

which rules to follow; which particular findings are ok.

http://www.sonarsource.org/
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Sonar – How to introduce static code analysis?
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Summary & Outlook
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Summary

■ Deployed D systems to whole over europe

■ D can be used for commercial software

■ Merging to D2, but still learning; D2 conventions evolve

■ AnalyzeD found several „hidden“ bugs within our code base; 
reviews are now free of violations against AnalyzeD 
conventions
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Outlook

■ Use of available D Frontend / Antlr
(Any Chance to get an updated D grammar published? Antlr 
Grammar?)

■ Populate http://dlang.funkwerk-itk.com with links to our 
projects about D (AnalyzeD, Dunit, AntlrDruntime, Model 
generator, ...)

■ Hopefully there will be soon an Effective D Book including 
best practices and rules of thumb.

http://dlang.funkwerk-itk.com/
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