
1

AnalyzeD – Static Code Analysis for D

Stefan Rohe
3th May 2013

DConf



2

Overview

■ Introduction / Motivation
■ Our D Way
■ Static Code Analysis
■ Metrics
■ D1to2-Example
■ Sonar
■ Summary
■ Outlook



3

Introduction / Motivation



4

Introduction

■ Funkwerk Information Technologies
 HQ in Munich, Germany
 One of the market leaders in 

passenger information systems
for public transportion

■ http://www.funkwerk-itk.com 

http://www.funkwerk-itk.com/


5

Motivation - Sun Microsystems rationale

■ Code conventions are important to programmers for a number 
of reasons:

 40%-80% of the lifetime cost of a piece of software goes to 
maintenance.

 Hardly any software is maintained for its whole life by the original 
author.

 Code conventions improve the readability of the software, allowing 
engineers to understand new code more quickly and thoroughly.

 If you ship your source code as a product, you need to make sure it is 
as well packaged and clean as any other product you create.

■ http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf


6

Motivation

■ Started with D (D1, Tango) in mid of 2008.
■ 05/2013 having 250kLOC D (src); 8 developers
■ Writing Clean Code → Many Code Reviews
■ Time waste and social difficulty to mark Code that violates 

(computer checkable) conventions
■ Even more difficult if conventions and their reason haven't 

been written down anywhere
■ Growing team; needed a way to effectively split knowledge 

about the conventions
■ Got Java/C++ Programmers
■ No courses or training available



7

Motivation

„You cannot always hire perfect engineers.“
Walter Bright, DConf 2013



8

Motivation - Teams

■ Teams need to have a common understanding of code
■ Need growth with:

 Size of team
 Distance between team members
 Cultural differences
 …

■ C++ Coding Conventions → Effective C++, C++
■ Java Coding Conventions → Oracle
■ D Coding Conventions → Effective D (anyone?)

■ C as well as C++ also define a safe subset
(e.g.: MISRA C / C++)



9

Motivation – C/C++, Java, D

■ Importance for Conventions grows as languages gets more 
complex

■ D Multiparadigm Language
■ not many clean finished projects to copy from
■ not many books
■ no courses / training available
■ few rules of thumb
■ few best practices, ...

■ D is a huge toolbox, but when to use which tool?



10

Our D Way



11

Our D Way

■ Highly available systems that works 24/7
■ Maintenance for 10+ years
■ → Investment in code quality pays out fast
■ Agile approach for development
■ Main goal is readable, maintainable, concise code
■ Asserts and all invariants are active in release version
■ Contracts everywhere
■ Tests:

 Whitebox (unittest, dunit)
 Blackbox (Python Acceptance tests)
 Static Code Analysis



12

Our D Way – OO && UML

■ Restricting to OO approach with one class/struct/interface per file
■ A class is an item with a strict boundary. e.g.: Arrays will be dupped 

at these borders.
■ We do not use Ddoc, because most important information about 

functions are not included.
 In- / Out-Constrains
 Exceptional Cases aka Throws

■ Not implementation should be documented, but interactions should 
be.

■ Therefore using UML Class Diagrams for each package
■ Codebase gets synchronized with these diagrams through Antlr, 

python, stringtemplates magic
■ Next to classes also model package dependency

→ no cyclic dependencies anymore



13

Our D Way – OO && UML



14

Our D Way - Whitebox Tests

■ Whitebox Test for Modules

■ Private static functions which could be tested inplace are 
tested using D-unittest-Blocks (Unit =:= Function)

■ Other tests require setups, teardowns, names (Testdox 
http://agiledox.sourceforge.net/). Need to be filtered, 
selected. For them using Dunit. (Unit =:= Class / Struct)

■ http://github.com/linkrope/dunit

http://agiledox.sourceforge.net/
http://github.com/linkrope/dunit


15

Our D Way - Whitebox Tests

■ Unittests execute
 in total,
 separate and
 in every combination of 2 (prove independence)

■ Crash in Druntime for (short running) programs with 
multiple threads



16

Static Code Analysis



17

Static Code Analysis - AnalyzeD

■ Supporting the currently discovered conventions

■ Restricted to own D code; string mixins (version, template) not 
supported → Not supporting whole D grammar.

■ Goals:
 Explain each convention and mention why it could be 

useful to follow it
 As less as possible false positives
 No annotations for the source code



18

Static Code Analysis - Categories

■ Bad Practice
■ Coding
■ Metric
■ Semantic
■ Style



19

Static Code Analysis – Levels of Analysis

Source AST
Token-
stream

Semantic-
Analysis

■ Different convention checkers use different input
■ Do not completly need to parse code, also could analyze invalid files with a 

subset of the rules

e.g.: overfull lines, ... e.g.: outcommented 
code, ...

e.g.: avoid for, 
pointer, goto, public 

imports, ...

e.g.: unused code, 
unused declarations, 

...



20

Static Code Analysis – Advantages in D

■ Code is already well
formalized.
Contracts are built in.

■ Developers should
use and trust these 
contracts



21

Static Code Analysis – Examples – Avoid For



22

Static Code Analysis – Examples – Prefer Auto



23

Static Code Analysis – Examples – Unused Variables



24

Static Code Analysis – Examples – Code Within Comments



25

Static Code Analysis – http://analyzeD.no-ip.org/online



26

Metrics



27

Metrics

- growing code base
- need to find hotspots where review should be done and where 
bug clusters could hide

Similarity with other Tokensubsets / Duplicated Code

Methods:
● statements
● interface (parameters, throws)
● lines
● high cyclomatic complexity

Classes/Interfaces/Structs:
● Attributes / functions
● Constructors
● Lines



28

Metrics – High Hard Limits for Metric Violations



29

Metrics – http://analyzeD.no-ip.org/metric



30

D1to2



31

D1to2 - Usecase

■ D1 Tango Migration to D2 Phobos
■ Highest migration effort in unittests, so mainly concentrated to 

automize that
■ Goal was to automize 80%, give the interesting 20% to the 

developer

■ Example generic rules:
 Replace char[] by string
 Replace Foo!(Bar)(baz) by Foo!Bar(baz)

■ Example Tango rules:
 Replace Tango.format(„{0}“, foo) with std.string.format(„%s“, 

foo)

■ Step by step reducing Tango Dependencies. Currently Tango just 
for Xml and Logging.



32

D1to2 – http://analyzeD.no-ip.org/d1to2



33

Sonar



34

Sonar – Easy Way to Start With

There are already several D projects out there;
Quality and Style are different;
sometimes even within the projects.

There is also the D-Style (http://dlang.org/dstyle.html) which 
already defines several rules.

- naming conventions
- declaration style
- one statement per line
- spaces instead of tabs; multiple of 4
- braces on a single line
- avoid overfull lines

We are going to host a sonar instance for every D project which 
is willing to.

http://dlang.org/dstyle.html


35

Sonar – How to introduce static code analysis?

Introduction of new conventions into existing code base difficult:
■ just analyzing increments
■ Analyzing whole codebase and increase number of active 

conventions

Sonar is an open source web based solution for quality checks 
on software for many languages; Continuous Quality Inspection
■ Wrote a D Plugin for Sonar

http://www.sonarsource.org/ 
■ Sonar enables project specific settings for code analysis; 

which rules to follow; which particular findings are ok.

http://www.sonarsource.org/


36

Sonar – How to introduce static code analysis?



37

Summary & Outlook



38

Summary

■ Deployed D systems to whole over europe

■ D can be used for commercial software

■ Merging to D2, but still learning; D2 conventions evolve

■ AnalyzeD found several „hidden“ bugs within our code base; 
reviews are now free of violations against AnalyzeD 
conventions



39

Outlook

■ Use of available D Frontend / Antlr
(Any Chance to get an updated D grammar published? Antlr 
Grammar?)

■ Populate http://dlang.funkwerk-itk.com with links to our 
projects about D (AnalyzeD, Dunit, AntlrDruntime, Model 
generator, ...)

■ Hopefully there will be soon an Effective D Book including 
best practices and rules of thumb.

http://dlang.funkwerk-itk.com/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

