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Introduction

• basic compiler structure has not really changed since Grace Hopper
• hardware capabilities have improved enormously

• adapt compiler to changed hardware
• learn everything that might be of interest from container to printf
style formatting

• graduate
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Ideas

• multithreading: use all CPUs
• caching: use the available RAM
• distributing: distribute work in a network

• lexer generator
• parser generator
• library with container etc.
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Overview of Compiler Phases
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Lexer Parser Communication

• classic Producer Consumer Problem
• historically a parser asks a lexer for a token

• using IO devices interruptively
I wastes IO performance
I OS might move HDD head away

• lexer creates token in a separate thread
• synchronisation is limited by copying multiple tokens at a time
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Lexer Parser Communication
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Multi Threaded Semantic Analysis

• semantic analysis checks if the program follow the rules
• this is done by traversing the Abstract Syntax Tree (AST) and
looking into the symbol table

• analysis should not modify any data
• tests are independent of each other

• write test as independent functions
• run tests in parallel (without any locking)
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Multi Threaded Semantic Analysis Benchmark
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Caching

• source files are not independent of each other
• many files get imported many times (e.g. stdio)
• unchanged files do not need to be read from the disk again
• use cached data for distributing work

• file level
• token level
• AST level (here it gets interesting)
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Linear Trees

• simplify storing of ASTs in cache
• simplify serializing ASTs

• flattening complete uniform trees is easy (binary heap, d-ary heap)
• ASTs are neither complete nor uniform
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Linear Trees
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Linear Tree Benchmark

# nodes Class based Struct based
28 0.0 0.0
29 0.0 0.0
210 0.0 0.0
211 0.0 0.0
212 1.0 1.2
213 1.7 4.8
214 6.1 11.5
215 10.7 23.0
216 27.3 47.9
217 53.4 100.2
218 109.3 192.7
219 278.9 403.6
220 1246.6 815.3

Tree building time in msecs.

# nodes Class based Struct based
28 0.0 0.0
29 0.0 0.0
210 0.0 0.0
211 0.0 0.0
212 0.0 0.0
213 0.0 0.0
214 0.0 1.0
215 0.0 2.0
216 2.1 7.3
217 6.2 19.1
218 14.3 38.5
219 31.3 76.7
220 65.0 154.2

Tree traversal time in msecs.
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Distribution

• while developing, many CPUs are idle
• multiplied by the number of workstations in an department
• networks are fast wrt. the size of a source file

• distribute the compilation of source files to workstations in the
network

• compiler becomes a daemon
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The Lexer Generator dex

• deterministic finite automaton (DFA) tokenizer
• table driven
• user can supply error recovery function
• supports UTF-8

I transition table is compressed
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The Lexer Generator dex
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The Lexer Generator dex

state mapping
state row
0 0
4 1
5 2
7 3

input mapping
input column
a 0
b 1
c 2
d 3

transition table
0 1 2 3

0 0 0 4 -1
1 -1 -1 -1 5
2 -1 -1 -1 5
3 -1 -1 7 -1

Original DFA Table

state mapping
state row
0 0
4 1
5 1
7 2

input mapping
input column
a 0
b 0
c 1
d 2

transition table
0 1 2

0 0 4 -1
1 -1 -1 5
2 -1 7 -1

Minimized DFA Table
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The Parser Generator dalr

• (g|la)lr1 parser generator
• table driven
• accepts all of Chomsky 2 (context free grammars)

I user code required to remove ambiguities
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Summary

• table driven unicode Lexer possible but infeasible
• splitting lexer and parser works well
• caching has great potential

I especially with linear trees
• multi threaded semantic analysis is a good approach

I if not for speed, then at least for clean code
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Using D

What is already there:

• fast turnaround time (crash-fix-build-run)
• compact expressive code

What will be there:

• good documentation
• : instead of ..
• containers
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The End

The most dangerous phrase in the
language is, “We’ve always done it
this way.”

Rear Admiral Grace Murray Hopper
(December 9, 1906 – January 1, 1992)

https://github.com/burner/libhurt
https://github.com/burner/dex
https://github.com/burner/dalr
https://github.com/burner/dmcd

http://www.svs.informatik.uni-oldenburg.de/60865.html
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