
Distributed Multithreaded Caching D Compiler

Robert Schadek

C A R L

V O N
O S S I E T Z K Y

May 1, 2013

Agenda

1 Introduction
2 Compiler Modifications

Overview of Compiler Phases
Lexer Parser Communication
Multi Threaded Semantic Analysis
Caching
Distribution

3 The Lexer Generator dex
4 The Parser Generator dalr
5 Conclusion

Robert Schadek A Distributed Multithreaded Caching D Compiler 2/21

Introduction

• basic compiler structure has not really changed since Grace Hopper
• hardware capabilities have improved enormously

• adapt compiler to changed hardware
• learn everything that might be of interest from container to printf
style formatting

• graduate

Robert Schadek A Distributed Multithreaded Caching D Compiler 3/21

Introduction

• basic compiler structure has not really changed since Grace Hopper
• hardware capabilities have improved enormously

• adapt compiler to changed hardware
• learn everything that might be of interest from container to printf
style formatting

• graduate

Robert Schadek A Distributed Multithreaded Caching D Compiler 3/21

Ideas

• multithreading: use all CPUs
• caching: use the available RAM
• distributing: distribute work in a network

• lexer generator
• parser generator
• library with container etc.

Robert Schadek A Distributed Multithreaded Caching D Compiler 4/21

Ideas

• multithreading: use all CPUs
• caching: use the available RAM
• distributing: distribute work in a network

• lexer generator
• parser generator
• library with container etc.

Robert Schadek A Distributed Multithreaded Caching D Compiler 4/21

Overview of Compiler Phases

lexer buffer parser ast and
symbols

semantic
analysis 1

semantic
analysis 2

semantic
analysis 3

semantic
analysis n

Logic
Phase

Process
data
struc-
ture

thread

code
generator

Robert Schadek A Distributed Multithreaded Caching D Compiler 5/21

Lexer Parser Communication

• classic Producer Consumer Problem
• historically a parser asks a lexer for a token

• using IO devices interruptively
I wastes IO performance
I OS might move HDD head away

• lexer creates token in a separate thread
• synchronisation is limited by copying multiple tokens at a time

Robert Schadek A Distributed Multithreaded Caching D Compiler 6/21

Lexer Parser Communication

• classic Producer Consumer Problem
• historically a parser asks a lexer for a token

• using IO devices interruptively
I wastes IO performance
I OS might move HDD head away

• lexer creates token in a separate thread
• synchronisation is limited by copying multiple tokens at a time

Robert Schadek A Distributed Multithreaded Caching D Compiler 6/21

Lexer Parser Communication

• classic Producer Consumer Problem
• historically a parser asks a lexer for a token

• using IO devices interruptively
I wastes IO performance
I OS might move HDD head away

• lexer creates token in a separate thread
• synchronisation is limited by copying multiple tokens at a time

Robert Schadek A Distributed Multithreaded Caching D Compiler 6/21

Lexer Parser Communication

0 10 20 30 40 50
buffer size

0.20

0.25

0.30

0.35

0.40

0.45

ti
m

e
 i
n
 s

e
co

n
d
s

smain.dpp: 3 lines

single-threaded
multi-threaded

0 10 20 30 40 50
buffer size

0.325

0.330

0.335

0.340

0.345

0.350

0.355

0.360

ti
m

e
 i
n
 s

e
co

n
d
s

examplearith.dpp: 27 lines

single-threaded
multi-threaded

0 10 20 30 40 50
buffer size

0.9

1.0

1.1

1.2

1.3

1.4

1.5

ti
m

e
 i
n
 s

e
co

n
d
s

klines.dpp: 283 lines

single-threaded
multi-threaded

0 10 20 30 40 50
buffer size

10.2

10.3

10.4

10.5

10.6

10.7

10.8

ti
m

e
 i
n
 s

e
co

n
d
s

k2lines.dpp: 1051 lines

single-threaded
multi-threaded

Robert Schadek A Distributed Multithreaded Caching D Compiler 7/21

Multi Threaded Semantic Analysis

• semantic analysis checks if the program follow the rules
• this is done by traversing the Abstract Syntax Tree (AST) and
looking into the symbol table

• analysis should not modify any data
• tests are independent of each other

• write test as independent functions
• run tests in parallel (without any locking)

Robert Schadek A Distributed Multithreaded Caching D Compiler 8/21

Multi Threaded Semantic Analysis

• semantic analysis checks if the program follow the rules
• this is done by traversing the Abstract Syntax Tree (AST) and
looking into the symbol table

• analysis should not modify any data
• tests are independent of each other

• write test as independent functions
• run tests in parallel (without any locking)

Robert Schadek A Distributed Multithreaded Caching D Compiler 8/21

Multi Threaded Semantic Analysis

• semantic analysis checks if the program follow the rules
• this is done by traversing the Abstract Syntax Tree (AST) and
looking into the symbol table

• analysis should not modify any data
• tests are independent of each other

• write test as independent functions
• run tests in parallel

(without any locking)

Robert Schadek A Distributed Multithreaded Caching D Compiler 8/21

Multi Threaded Semantic Analysis

• semantic analysis checks if the program follow the rules
• this is done by traversing the Abstract Syntax Tree (AST) and
looking into the symbol table

• analysis should not modify any data
• tests are independent of each other

• write test as independent functions
• run tests in parallel (without any locking)

Robert Schadek A Distributed Multithreaded Caching D Compiler 8/21

Multi Threaded Semantic Analysis Benchmark

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ti

m
e
 i
n
 s

e
co

n
d
s

smain.dpp: 3 lines

one thread
two threads
four threads
eight threads
sixteen threads

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

biggerexample.dpp: 59 lines

one thread
two threads
four threads
eight threads
sixteen threads

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

klines.dpp: 283 lines

one thread
two threads
four threads
eight threads
sixteen threads

0 10 20 30 40 50 60
number of jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ti
m

e
 i
n
 s

e
co

n
d
s

k2lines.dpp: 1051 lines

one thread
two threads
four threads
eight threads
sixteen threads

Robert Schadek A Distributed Multithreaded Caching D Compiler 9/21

Caching

• source files are not independent of each other
• many files get imported many times (e.g. stdio)
• unchanged files do not need to be read from the disk again
• use cached data for distributing work

• file level
• token level
• AST level (here it gets interesting)

Robert Schadek A Distributed Multithreaded Caching D Compiler 10/21

Caching

• source files are not independent of each other
• many files get imported many times (e.g. stdio)
• unchanged files do not need to be read from the disk again
• use cached data for distributing work

• file level
• token level
• AST level

(here it gets interesting)

Robert Schadek A Distributed Multithreaded Caching D Compiler 10/21

Caching

• source files are not independent of each other
• many files get imported many times (e.g. stdio)
• unchanged files do not need to be read from the disk again
• use cached data for distributing work

• file level
• token level
• AST level (here it gets interesting)

Robert Schadek A Distributed Multithreaded Caching D Compiler 10/21

Linear Trees

• simplify storing of ASTs in cache
• simplify serializing ASTs

• flattening complete uniform trees is easy (binary heap, d-ary heap)
• ASTs are neither complete nor uniform

Robert Schadek A Distributed Multithreaded Caching D Compiler 11/21

Linear Trees

• simplify storing of ASTs in cache
• simplify serializing ASTs

• flattening complete uniform trees is easy (binary heap, d-ary heap)
• ASTs are neither complete nor uniform

Robert Schadek A Distributed Multithreaded Caching D Compiler 11/21

Linear Trees

• simplify storing of ASTs in cache
• simplify serializing ASTs

• flattening complete uniform trees is easy (binary heap, d-ary heap)
• ASTs are neither complete nor uniform

Robert Schadek A Distributed Multithreaded Caching D Compiler 11/21

Linear Trees

• simplify storing of ASTs in cache
• simplify serializing ASTs

• flattening complete uniform trees is easy (binary heap, d-ary heap)
• ASTs are neither complete nor uniform

Robert Schadek A Distributed Multithreaded Caching D Compiler 11/21

Linear Trees

S

DeclDefs

DeclDef

Declarator

DeclDefs

DeclDef

ReturnStatement

1

Identifier

main

BasicType

int

int main() {
return 1;

}

In
de
x

N
um

be
r
of

C
hi
ld
re
n

In
de
x
of

fir
st

C
hi
ld

N
am

e

0 1 0 S
1 1 1 DeclDefs
2 1 2 DeclDef
3 3 3 Declarator
4 1 6 BasicType
5 0 0 int
6 1 7 Identifer
7 0 0 main
8 1 8 DeclDefs
9 1 9 DeclDef
10 1 10 ReturnStatement
11 0 0 1

Array of tree nodes

In
de
x

C
hi
ld

In
de
x

0 1
1 2
2 3
3 4
4 6
5 8
6 5
7 7
8 9
9 10
10 11
Children index array

Robert Schadek A Distributed Multithreaded Caching D Compiler 12/21

Linear Tree Benchmark

nodes Class based Struct based
28 0.0 0.0
29 0.0 0.0
210 0.0 0.0
211 0.0 0.0
212 1.0 1.2
213 1.7 4.8
214 6.1 11.5
215 10.7 23.0
216 27.3 47.9
217 53.4 100.2
218 109.3 192.7
219 278.9 403.6
220 1246.6 815.3

Tree building time in msecs.

nodes Class based Struct based
28 0.0 0.0
29 0.0 0.0
210 0.0 0.0
211 0.0 0.0
212 0.0 0.0
213 0.0 0.0
214 0.0 1.0
215 0.0 2.0
216 2.1 7.3
217 6.2 19.1
218 14.3 38.5
219 31.3 76.7
220 65.0 154.2

Tree traversal time in msecs.

Robert Schadek A Distributed Multithreaded Caching D Compiler 13/21

Distribution

• while developing, many CPUs are idle
• multiplied by the number of workstations in an department
• networks are fast wrt. the size of a source file

• distribute the compilation of source files to workstations in the
network

• compiler becomes a daemon

Robert Schadek A Distributed Multithreaded Caching D Compiler 14/21

Distribution

• while developing, many CPUs are idle
• multiplied by the number of workstations in an department
• networks are fast wrt. the size of a source file

• distribute the compilation of source files to workstations in the
network

• compiler becomes a daemon

Robert Schadek A Distributed Multithreaded Caching D Compiler 14/21

The Lexer Generator dex

• deterministic finite automaton (DFA) tokenizer
• table driven
• user can supply error recovery function
• supports UTF-8

I transition table is compressed

Robert Schadek A Distributed Multithreaded Caching D Compiler 15/21

The Lexer Generator dex

• deterministic finite automaton (DFA) tokenizer
• table driven
• user can supply error recovery function
• supports UTF-8

I transition table is compressed

Robert Schadek A Distributed Multithreaded Caching D Compiler 15/21

The Lexer Generator dex

Robert Schadek A Distributed Multithreaded Caching D Compiler 16/21

The Lexer Generator dex

state mapping
state row
0 0
4 1
5 2
7 3

input mapping
input column
a 0
b 1
c 2
d 3

transition table
0 1 2 3

0 0 0 4 -1
1 -1 -1 -1 5
2 -1 -1 -1 5
3 -1 -1 7 -1

Original DFA Table

state mapping
state row
0 0
4 1
5 1
7 2

input mapping
input column
a 0
b 0
c 1
d 2

transition table
0 1 2

0 0 4 -1
1 -1 -1 5
2 -1 7 -1

Minimized DFA Table

Robert Schadek A Distributed Multithreaded Caching D Compiler 17/21

The Parser Generator dalr

• (g|la)lr1 parser generator
• table driven
• accepts all of Chomsky 2 (context free grammars)

I user code required to remove ambiguities

Robert Schadek A Distributed Multithreaded Caching D Compiler 18/21

The Parser Generator dalr

• (g|la)lr1 parser generator
• table driven
• accepts all of Chomsky 2 (context free grammars)

I user code required to remove ambiguities

Robert Schadek A Distributed Multithreaded Caching D Compiler 18/21

Summary

• table driven unicode Lexer possible but infeasible
• splitting lexer and parser works well
• caching has great potential

I especially with linear trees
• multi threaded semantic analysis is a good approach

I if not for speed, then at least for clean code

Robert Schadek A Distributed Multithreaded Caching D Compiler 19/21

Summary

• table driven unicode Lexer possible but infeasible
• splitting lexer and parser works well
• caching has great potential

I especially with linear trees
• multi threaded semantic analysis is a good approach

I if not for speed, then at least for clean code

Robert Schadek A Distributed Multithreaded Caching D Compiler 19/21

Using D

What is already there:

• fast turnaround time (crash-fix-build-run)
• compact expressive code

What will be there:

• good documentation
• : instead of ..
• containers

Robert Schadek A Distributed Multithreaded Caching D Compiler 20/21

Using D

What is already there:

• fast turnaround time (crash-fix-build-run)
• compact expressive code

What will be there:

• good documentation
• : instead of ..
• containers

Robert Schadek A Distributed Multithreaded Caching D Compiler 20/21

Using D

What is already there:

• fast turnaround time (crash-fix-build-run)
• compact expressive code

What will be there:

• good documentation
• : instead of ..
• containers

Robert Schadek A Distributed Multithreaded Caching D Compiler 20/21

The End

The most dangerous phrase in the
language is, “We’ve always done it
this way.”

Rear Admiral Grace Murray Hopper
(December 9, 1906 – January 1, 1992)

https://github.com/burner/libhurt
https://github.com/burner/dex
https://github.com/burner/dalr
https://github.com/burner/dmcd

http://www.svs.informatik.uni-oldenburg.de/60865.html

Robert Schadek A Distributed Multithreaded Caching D Compiler 21/21

https://github.com/burner/libhurt
https://github.com/burner/dex
https://github.com/burner/dalr
https://github.com/burner/dmcd
http://www.svs.informatik.uni-oldenburg.de/60865.html

	Introduction
	Compiler Modifications
	The Lexer Generator dex
	The Parser Generator dalr
	Conclusion

