
1 / 32

Generic Programming Must Go

Andrei Alexandrescu

Heap Building Blocks

2 / 32

Musings on Design

3 / 32

• Procedural: Work with unseen data

• OO, Functional: Work with unseen code and data

• Generic: Work with unseen code types and data layout

Generic Programming

4 / 32

“. . . programming paradigm whereby fundamental

requirements on types are abstracted from across concrete

examples of algorithms and data structures and formalised

as concepts, with generic functions implemented in terms of

these concepts. . . ” — Wikipedia

Generic Programming

5 / 32

+ Focus on algorithms

Generic Programming

5 / 32

+ Focus on algorithms

+ Good abstraction power

Generic Programming

5 / 32

+ Focus on algorithms

+ Good abstraction power

+ No indirection, so good speed

Generic Programming

5 / 32

+ Focus on algorithms

+ Good abstraction power

+ No indirection, so good speed

− Rigid; very limited adaptability

Generic Programming

5 / 32

+ Focus on algorithms

+ Good abstraction power

+ No indirection, so good speed

− Rigid; very limited adaptability

− Only works for small, scarce-vocabulary domains

Generic Programming

5 / 32

+ Focus on algorithms

+ Good abstraction power

+ No indirection, so good speed

− Rigid; very limited adaptability

− Only works for small, scarce-vocabulary domains

− Obsessed with naming everything

We’ve already “betrayed” GP

6 / 32

• InputRange, ForwardRange,

BidirectionalRange, RandomAccessRange

We’ve already “betrayed” GP

6 / 32

• InputRange, ForwardRange,

BidirectionalRange, RandomAccessRange

• hasLength, isInfinite, hasSlicing,

hasMobileElements

We’ve already “betrayed” GP

6 / 32

• InputRange, ForwardRange,

BidirectionalRange, RandomAccessRange

• hasLength, isInfinite, hasSlicing,

hasMobileElements

• By the canon: InputRangeWLength, ForwardRangeWLength,

BidirectionalRangeWLength, RandomAccessRangeWLength,

InputRangeInfinite, ForwardRangeInfinite,

BidirectionalRangeInfinite, RandomAccessRangeInfinite,

RandomAccessRangeWSlicing,

RandomAccessRangeWLengthWSlicing,

RandomAccessRangeInfiniteWSlicing, ...

7 / 32

And It Was Very Good

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

◦ contiguous vs. non-contiguous

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

◦ contiguous vs. non-contiguous

◦ ownership

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

◦ contiguous vs. non-contiguous

◦ ownership

◦ resolving internal pointers

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

◦ contiguous vs. non-contiguous

◦ ownership

◦ resolving internal pointers

◦ deallocation

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

◦ contiguous vs. non-contiguous

◦ ownership

◦ resolving internal pointers

◦ deallocation

◦ per-instance state vs. monostate

Uhm, Allocator Connection?

8 / 32

• Memory allocation is high-vocabulary

◦ alignment

◦ (dynamically) aligned allocation

◦ rounding up/quantization

◦ in-place expansion

◦ reallocation

◦ contiguous vs. non-contiguous

◦ ownership

◦ resolving internal pointers

◦ deallocation

◦ per-instance state vs. monostate

◦ thread-local vs. shared

10 / 32

Let’s Go Descartes!

Design by Introspection

11 / 32

Simplest Design That Could Possibly Work

12 / 32

• Make all allocation primitives optional, except:

◦ void[] allocate(size_t);

◦ enum uint alignment;

• All others optional, probed introspectively

• e.g. hasMember!(A, "expand")

• Combination allocators that define and adapt

capabilities to their “hosts”, in very little code

Simplest Allocator

13 / 32

• “Push the pointer”

struct Region {

private void* b, e, p;

this(void[] buf) {

p = b = buf.ptr;

e = b + buf.length;

}

enum uint alignment = 1;

void[] allocate(size_t n) {

if (e - p < n) return null;

auto result = p[0 .. n];

p += n;

return result;

}

}

Immediate Improvements

14 / 32

• Support better alignments (1 is seldom useful)

• Embed buffer

• Or, release buffer in destructor?

• More primitives such as deallocateAll

Simplest Composite Allocator

15 / 32

Let’s define FallbackAllocator: try one, then another

struct FallbackAllocator(P, F) {

P primary;

F fallback;

enum alignment = min(P.alignment,

F.alignment);

void[] allocate(size_t n) {

auto r = p.allocate(n);

if (r.length != n) r = f.allocate(n);

return r;

}

}

And Suddenly!

16 / 32

alias Local = FallbackAllocator!(

Region,

Mallocator

);

We Want Deallocation!

17 / 32

• Optional method: void deallocate(void[]);

static if (hasMember!(P, "owns")

&& (hasMember!(P, "deallocate")

|| hasMember!(F, "deallocate")))

void deallocate(void[] b) {

if (p.owns(b)) {

static if (hasMember!(P, "deallocate"))

primary.deallocate(b);

} else {

static if (hasMember!(F, "deallocate"))

return f.deallocate(b);

}

}

• Need a new method

• Only P must define owns

18 / 32

Let’s take a look at all

optional methods

Propagating owns

19 / 32

static if (hasMember!(P, "owns")

&& hasMember!(F, "owns"))

bool owns(void[] b) {

return p.owns(b) || f.owns(b);

}

How about reallocation?

20 / 32

bool reallocate(ref void[] b, size_t newSize) {

if (newSize == 0) {

static if (hasMember!(typeof(this), "deallocate"))

deallocate(b);

return true;

}

if (b is null) {

b = allocate(newSize);

return b !is null;

}

...

• (Note on introspection: “Would I be able to do that?”)

reallocate (2 of 3)

21 / 32

...

bool crossAllocatorMove(F, T)(ref F from, ref T to) {

auto b1 = to.allocate(newSize);

if (!b1.ptr) return false;

if (b.length < newSize) b1[0 .. b.length] = b[];

else b1[] = b[0 .. newSize];

static if (hasMember!(From, "deallocate"))

from.deallocate(b);

b = b1;

return true;

}

...

reallocate (the pride)

22 / 32

...

if (b is null || p.owns(b)) {

if (p.reallocate(b, newSize)) return true;

// Move from p to f

return crossAllocatorMove(p, f);

}

if (f.reallocate(b, newSize)) return true;

// Interesting. Move from f to p.

return crossAllocatorMove(f, p);

}

Global reallocate

23 / 32

bool reallocate(A)(ref A a, ref void[] b, size_t s) {

if (b.length == s) return true;

static if (hasMember!(A, "expand")) {

if (b.length <= s && a.expand(b, s - b.length))

return true;

}

auto r = a.allocate(s);

if (r.length != s) return false;

if (r.length <= b.length) r[] = b[0 .. newB.length];

else r[0 .. b.length] = b[];

static if (hasMember!(A, "deallocate"))

a.deallocate(b);

b = r;

return true;

}

Segregating by Size

24 / 32

struct Segregator(size_t threshold,

Small, Large) {

Small small;

Large large;

enum alignment = min(Small.alignment,

Large.alignment);

void[] allocate(size_t n) {

return n <= threshold

? small.allocate(n)

: large.allocate(n);

}

}

static if (hasMember!(SmallAllocator, "expand")

|| hasMember!(LargeAllocator, "expand"))

bool expand(ref void[] b, size_t delta) {

if (b.length + delta <= threshold) {

// Old and new allocations handled by _small

static if (hasMember!(SmallAllocator, "expand"))

return _small.expand(b, delta);

else

return false;

}

if (b.length > threshold) {

// Old and new allocations handled by _large

static if (hasMember!(LargeAllocator, "expand"))

return _large.expand(b, delta);

else

return false;

}

// Oops, cross-allocator transgression

return false;

}

Design by Introspection Tenets

26 / 32

• Compose designs from small pieces

• Distinguish required from optional methods

• No need to name all combinations

◦ Generic Programming is fail

◦ Concepts are fail

• Assemble using introspection

• Use Boolean logic and static if

◦ Constrain types and signatures

• Yay

Take a look

27 / 32

• https://github.com/andralex/phobos/tree/

allocator/std/experimental/allocator

• http://erdani.com/d/phobos-prerelease/

std experimental allocator.html

Perk: Ouroboros Style

28 / 32

Array of Allocators: Going Too Meta?

29 / 32

• Goal:

◦ Define an array of generic allocators

• e.g. Regions, HeapBlocks. . .

◦ Grow and shrink the array per application needs

◦ Keep some per-allocator metadata

• Question:

◦ Where do you store the array?

Solution: Going Ouroboros!

30 / 32

• Create an allocator on the stack

• Use it to allocate the needed metadata memory

• Move it to that memory

• Keep a pointer to the metadata in the meta-allocator

• Problem solved

Summary

31 / 32

• Generic Programming insufficient for flexible designs

• Design by Introspection being proposed

• Give components required and optional APIs

• Use introspection to assemble larger designs from

small components

For My Money

32 / 32

Static introspection + CTFE + Boolean constraints

+ static if = WIN

	Heap Building Blocks
	Musings on Design
	Generic Programming
	Generic Programming
	We've already ``betrayed'' GP
	
	Uhm, Allocator Connection?
	
	

	Design by Introspection
	Simplest Design That Could Possibly Work
	Simplest Allocator
	Immediate Improvements
	Simplest Composite Allocator
	And Suddenly!
	We Want Deallocation!
	
	Propagating |owns|
	How about reallocation?
	|reallocate| (2 of 3)
	|reallocate| (the pride)
	Global |reallocate|
	Segregating by Size
	
	Design by Introspection Tenets
	Take a look

	Perk: Ouroboros Style
	Array of Allocators: Going Too Meta?
	Solution: Going Ouroboros!
	Summary
	For My Money

