
D is for Science
John Colvin



What is scientific 
programming?



You want to do science, using a computer



but the existing software isn’t up to the 
task



Scientific Programming
• Simulations 
• Data Analysis 
• Visualisations 
• Control



Simulation

• Climate models 

• Aerofoil models 

• Epidemics

Start with a system and some rules. Numerically, 
calculate the outcome. E.g.:



Data Analysis

• Calculating summary statistics of a social network like the 
mean degree. 

• Identifying different types of oscillations in/of coronal 
loops. 

• Does that star have a planet? 

• How much of that weapons grade uranium is now 
actually lead?

You’ve got some data, work out who/what you’re 
looking at, E.g.



Scales

• DIY instruments with microcontrollers. 

• Data cleaning scripts on laptops 

• >106 core simulations running for weeks or even 
months.

Every Scale



Example: 

“I just want to get some summary 
stats!”



A weird data layout
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Error 
flag Exponent Truncated 

Mantissa unsigned integer

Want to calculate the mean and standard deviation of 
the floating point number for each value of the integer, 

with and without erroneous data removed



Large scale simulations
• Fortran is still well used and well liked. 

• C is also common 

• C++ is used by some high-profile projects (e.g. 
OpenFOAM), but isn’t widely liked. 

• Small teams of developers with some peripheral 
scientists, at best.

The status quo



Why Fortran?
• It has proper multidimensional arrays 

• You can do most of what you need without pointers 

• Hard to mess up due to restrictive semantics 

• Easy for optimisers 

• Totally familiar to 2 generations worth of scientific 
programmers



Large simulations
• Ease of development for people aren’t that hugely 

in to programming. 

• No compromises performance 

• MPI support. Any competing system needs to have 
equally good support from high performance 
network hardware/drivers e.g. infiniband 

• Great linux support

Language requirements



Simulations in D
Multidimensional arrays ✔

No compromises performance ✔
MPI support ✘

Linux support ✔

Foot-shooting protection ✔

Familiarity ✘

Proven track record ✘

Flexibility ✔



Data Analysis
• Matlab, Python, IDL, shell scripts 

• Dropping down to C / Fortran for when performance 
becomes a problem 

• Often done by people who aren’t really interested in 
programming, even if it’s 90% of their job in practice 

• Mostly individuals working independently, or large 
infrastructure projects set up for specific 
experiments.

The status quo



Why Python/Matlab?
• Get work done, fast. 

• Libraries 

• No segfaults 

• REPLs/notebooks (for everything, or sometimes just as 
command and control for scripts). Persistent state is great. 

• Fast enough most of the time 

• Familiarity and existing tools. Huge piles of specialised little 
functions that whole workflows are wedded to 

• Libraries. Libraries. Libraries.



Data Analysis
• Ease of development 

• Fast enough. People are used to slow 

• OS X, Linux and Windows support all necessary, 
although Windows less so 

• Visualisation 

• Quick Edit-Run cycle and a stateful UI. No one wants 
to wait 60s compiling code and reloading datasets just 
to slightly change a line weight on a plot!

Language requirements



Data Analysis in D
Multidimensional arrays ✘

Good enough performance ✔
Linux support ✔

OS X support ✘

REPL / notebook ✘

Familiarity ✘

Interoperability ✔

Flexibility ✔



Numerical precision
• x87 is really slow for a variety of reasons 

• Assuming you do actually need 80 bit floats: 

• Either you know what you are doing and need 
choice or 

• You don’t know what you’re doing, a few extra bits 
isn’t going to solve your numerical problems. 

• A lot of high performance work is not hyper-
precision-sensitive, by design.



Aside: GPGPU
• There’s a lot of scientific calculation that is implicitly 

parallel and that works well on GPUs 

• On the other hand, despite improvements in 
libraries and tooling, the barrier to entry remains 
high enough to put off most 

• I have my own attempt to give D great GPGPU 
support, but it is still work in progress



D-OpenCL architecture
• Layer 1: Take the OpenCL C API and make it 

strictly typed 

• Layer 2: Take this strictly typed layer and layer a 
more D-appropriate API on top 

• Layer 3: Go to town. High level abstractions to 
enable people to easily execute code on co-
processors. Based on Layer 2.



DlangScience

• https://github.com/DlangScience 

• A focal point for both developers and users 

• Vetted, Tested and eventually, hopefully, 
comprehensive. 

• Currently just me :-(

https://github.com/DlangScience


Fin

Questions?


