Forting Over to D

: Objectives

- Recount the discovery process of D et

features during my project
development

- What helped me really love D? i

+ Expose some cool D stuff!

—_—

Why | Love D: An Undergrad Experience

Erich Gubler

development

4 - What helped me really love |

+ Expose some cool D stuff!

Why | Love D: An Undergrad Experience

Erich Gubler

Objectives

- Récount the discovery process of D
features during my project
development

- What helped me really love D?

- Expose some cool D stuff!

Last Opinions

CS 4450: Where It Began

- Chuck Allison got me into D while
teaching me CS 4450!

s At the same time, I was

implementing a virtual machine
in C++ for CS 4380.

- I decided to port and continue
development in D so I could get a
better grade in CS 4450's D
assignments. :)

- I stayed with D through
implementing a compiler later!

Porting Over to D

- No more *.h and *.cpp

- "I don't have to deal with pointers
anymore?"

- Pointers are like an unsheathed knife
in your pants pocket...

- No more namespace operator!

- 'Twas a snap! Mostly stripping stuff.

EEEEE

[

Enums

VM

Assembly Assembler Bytecode
ADD R1l, R2 OxOE [Ox01 | Ox02
SUB R3, R4 OxOF | Ox03 | Ox04
LDR R5, DATA 0x0B | 0x05 | 0x??
STR R6, RESULT 0XOA | OX06 | 0x??

LDR R5, R6 . -

String to enum and back!

- How would you implement it?

C++ D

« Can use std.conv's "to®
function because enums are
smart In &

- Switch/if-else statements for efficiency
- Map for ease on the mind

.
CapstoneVM::Register getRegister{const std::string &name) PortEd.
1

//5ingleton-pattern goodness . . .
static std::map<std::string, CapstoneVM::Register> registerMap; RengfeF t ORE‘QlSTer (strin g name)

{

if{registerMap.empty())

{ try
registerMap["RE"] = CapstoneVM::RO;
registerMap["R1"] = CapstoneVM::R1; {
registerMap["R2"] = CapstoneVM::R2; return to!Register(name) ;
registerMap["R3"] = CapstoneVM::R3;
registerMap["R4"] = CapstoneVM: :R4; }
registerMap["R5"] = CapstoneVvM::R5;
registerMap["R&"] = CapstoneVM: :RE; catch {} .
registerMap["R7"] = CapstoneVM::R7; return Register.INVALID REGISTER;
registerMap["PC"] = CapstoneVM::PC; } -
1

std::map<std::string, CapstoneVM::Register=::iterator it = registerMap.find({name);

5 return ((it != registerMap.end()) ? registerMaplname] : CapstoneVM::INVALID REGISTER); ...it'S Iike taking a bath, 'En1t it?

. Switch/if-else statements tor efticiency
- Map for ease on the mind

CapstoneVM::Regisfer getRegister|(const std::string &name)

{

//Singleton-pattern goodness
static std::map<std::string, CapstoneVM::Register> registerMap;

if(registerMap.empty())

{
registerMap["R0O"] = CapstoneVM: :R0O;
registerMap["R1"] = CapstoneVM: :R1;
registerMap["R2"] = CapstoneVM: :R2;
registerMap["R3"] = CapstoneVM: :R3;
registerMap["R4"] = CapstoneVM: :R4;
registerMap["R5"] = CapstoneVM: :R5;
registerMap["R6"] = CapstoneVM: :R6;
registerMap["R7"] = CapstoneVM: :R7;
registerMap["PC"] = CapstoneVM: :PC;

}

std: :map<std::string, CapstoneVM::Register>::iterator it = registerMap.find(name);
return ((it '= registerMap.end()) ? registerMap[name] : CapstoneVM::INVALID REGISTER);

String to enum and back!

- How would you implement it?

C++ D

« Can use std.conv's "to®
function because enums are
smart In &

- Switch/if-else statements for efficiency
- Map for ease on the mind

.
CapstoneVM::Register getRegister{const std::string &name) PortEd.
1

//5ingleton-pattern goodness . . .
static std::map<std::string, CapstoneVM::Register> registerMap; RengfeF t ORE‘QlSTer (strin g name)

{

if{registerMap.empty())

{ try
registerMap["RE"] = CapstoneVM::RO;
registerMap["R1"] = CapstoneVM::R1; {
registerMap["R2"] = CapstoneVM::R2; return to!Register(name) ;
registerMap["R3"] = CapstoneVM::R3;
registerMap["R4"] = CapstoneVM: :R4; }
registerMap["R5"] = CapstoneVvM::R5;
registerMap["R&"] = CapstoneVM: :RE; catch {} .
registerMap["R7"] = CapstoneVM::R7; return Register.INVALID REGISTER;
registerMap["PC"] = CapstoneVM::PC; } -
1

std::map<std::string, CapstoneVM::Register=::iterator it = registerMap.find({name);

5 return ((it != registerMap.end()) ? registerMaplname] : CapstoneVM::INVALID REGISTER); ...it'S Iike taking a bath, 'En1t it?

- Can use std.conv's "to"
function because enums are
smartinD

string s = //...
auto r = s.to!Register;

r = Register.R1l;
S = r.to!string;

- Can use std.conv's "to"
function because enums are

cy
' Ported: :
Register toRegister(string name)
{
try
{
return to!Register(name) ;
}
catch {}
return Register.INVALID REGISTER;
¥
e) ;
3 ISTER) ;

...it's like taking a bath, isn't it?

C++ D

. - Can use std.conv’s "to”
function because enums are
smeart. in [+

string s = //

« Switch/if-else statements for efficiency

r - Register.Rl:
= v Lotstieing

. o
- Map for ease on the mind
CapstoneVM: :Register getRegister(const std::string &name) Ported'
{
//Singleton-pattern goodness . . :
static std::map<std::string, CapstoneVM::Register> registerMap; Regls‘ter tOREQlSter(St rlng name)
if(registerMap.empty()) {
{ try
registerMap["RB"] = CapstoneVM::Ra; {
registerMap["R1"] = CapstoneVM::R1;
registerMap["R2"] = CapstoneVM::R2; return to! Register(name) ;
registerMap["R3"] = CapstoneVM: :R3;
registerMap["R4"] = CapstoneVM::R4; }
registerMap["R5"] = CapstoneVM::R5;
registerMap["RE6"] = CapstoneVM: :R6; CatCh {} .
registerMap["R7"] = CapstoneVM::R7; return Register.INVALID REGISTER;
registerMap["PC"] = CapstoneVM: :PC; } -
}

std: :map<std::string, CapstoneVM::Register=::iterator it = registerMap.find(name);

! return ({it != registerMap.end{()) ? registerMap[name] : CapstoneWM::INVALID_REGISTER); ...it'S ||ke taklng a bath, Isnlt It?

LDR R5, DATA

Another example: load pointer in register

STR R6, RESULT
LURRO, RO e

use D removed the obstacles

public enum Opcode

{

INVALID OPCODE = -1,

/] ...

STR,
LDR,
STB,
LDB,

A e

//Ind1
STR_IN
LDR IN
STB_IN
LDB IN

rect load/stores
DIRECT,
DIRECT,
DIRECT,

DIRECT,

// Instruct

case Opcode
, Opcoc
, Opcoc
, Opcoc
{

au
1T

e // Instructions that need some top-down parsing to decide what they need
case Opcode.STR
E=-1, , Opcode.LDR
, Opcode.STB
, Opcode.LDB:
{
auto match = matchAll(argumentString, doubleArgumentRegex);
if(match.front[2].toRegister == Register.INVALID REGISTER)

{
p = new RegisterLabelParser(argumentString);

}

else

ad/stores {

B oToUse = |(o.to!string ~ " INDIRECT").to!Opcode;
P = new R@glsterReglisterParser(argumentstring) ;

) Y

o This is pretty neat!

2asy because D removed the obstacles.

public enum Opcode // Instructions that need some top-down parsing to decide what they need

{ case Opcode.STR
INVALID_OPCODE = -1, , Opcode.LDR
, Opcode.STB
/... , Opcode.LDB:
STR, {

auto match = matchAll(argumentString, doubleArgumentRegex);

LDR, . . X
STB if(match.front[2].toRegister == Register.INVALID REGISTER)
LDB, { | .
p = new RegisterLabelParser(argumentString);
/... }
else
//Indirect load/stores {
STR_INDIRECT, oToUse = |(o.to!string ~ " INDIRECT").to!Opcode;
LDR_INDIRECT, p = new R@glsterRegisterParser(argumentstring);
STB_INDIRECT, } 19
LDB_INDIRECT, N «
) - This is pretty neat!

Super easy because D removed the obstacles.

The D std: Raising
the Bar

- I've never been so rewarded by just
reading through the docs!

- Because of this, it's tempting to say to
newbies, "RTD or get out" (but we
shouldn't)

- Of special note:

- std.getopt =1 - std.json
. std.csv - std.database (?)

Why are these so nice?

= Reducing the reimention of the wheel increases
producthity.

std.getopt

This needs exposition! Some comments heard:
- "...that's standardized?"
- "That's cheating!"

- "No way..."

As fast as prototyping

Modular getopt calls

B (o] - Lagging with channels

Using the original GNU getopt

e —
e
H =
.
& e A

Where was this in C++?

- After using D's getopt, I nerdraged from not
having something nice like it in C++..501
wrote it. ;)

Using the original GNU getopt

//Command-1line argument

int argFlag;
|while ((argFlag = getopt

switch (argFlag)
{

parsing

(argc, argv, "i:0:"))|'= -1)

~\

e Domain-specific language (eek!)
break Same error-prone while loop
case 0 .
é?ééﬁ; <«— Switch statement is error prone
caseif?(;ptopt = ‘0" || optopt == '1")

ReturnEfror (ERRORCODE_BADARGS, "Option -%c requires an argument.\n", optopt);

return 1;
default:

goto EXIT;

As fast as prototyping

1 import std.stdio;

2 1import std.getopt;

3

4 int main(string[] args)

5 1

6 // Opt variables

7 string myString;

8 bool verboseFlag = false;

9

10 auto result = getopt(args

11 , 's|myString", &myString // -s or --myString
12 , "verboseFlag", &verboseFlag); // --verboseFlag=[...]
13

14 writeln("myString: ", myString);

15 writeln("verboseFlag: ", verboseFlag);

16

17 writeln("args left: ", args);

1Q

19 // Print help
20 1f(result.helpWanted)
21 defaultGetoptPrinter("Help:", result.options);
22

23 return 0;

Modular getopt calls

- Logging with channels

- 10
./compiler --channel=tg

477 Grabs a single output file and any number of dinput files trom command args
100ptResylt parseldriles{ref stringl[] args)
Io0piMesult de; i| hannalLoggs PrasetEnon|
try
fiesult parsedrgsirat steingll args)
getoptiargs
. outfile|o, — i oo - b - e
. config. passThrough ge‘:opt call - Getopt makes this all work
1 \ 1
potoptiargs
+ Lrenalhamels
Eramiresat

1 sults.
caleh(GetOplExcepiion el{ /* ... */]
=T . contig.passThrough
i i
| ;
cateh Gt Ereantio a1l £ . o}

1o, inputs = args[l.
Return data structure

args. Length - 1;
return 1o;

Reuse and factorization of getopt options = win!

- Putting it all together

vaid main(string[] args)

suto Logging = Compilerlogger.parsehrgs{args); |4_ Call Opt parsing modules

auto io = parselOFiles(args);

if(logging. result .halpWanted ie. result.helphanted)
{

etoptPrinter;
is.result.options)

defaulih
argal[o] " <s6U

inpert std.getopt 3
legging. result .options

defaultGetaptPrinter(Usage

if(ie.inputs.length a) s

urnError! (ErrorLeve - ed™}; Use builtin help
{ia.inputs . length =
returnErrar! (Errorievel.

Misc. validation

EPIC WIN

This is the face of an epic win

- 10

/// Grabs a single output file and any number of input files from command args

I00ptResult parselOFiles(ref string[] args)

{

I00ptResult io; |

try

{

getopt(args

, "outfile|o", |§&io.output ¢
, config.passThrough getopt Ca”
i F

by

catch(GetOptException e){ /* ... */ }

10.1nputs = args[1l..$%$];

LAl < Return data structure

return 10;

HVP‘- wGALLY

- Logging with channels

./compller --channel=tg

class ChannelLogger{(ChannelEnum, PresetEnum)

enum CompilerlogChannel
{ {
/.. TOKENIZING = 't', /// Pfints output from the tokenizer
GRAMMAR_STEP = 'g', ///|Prints output as the grammar is walked
,) i SEMANTIC ANALYSIS = 'e'} /// Prints output from semantic analysis
static ChannelloggerResult parseArgs(ref string[] args) SYMBOL_RESOLUTION = 'y'| /// Prints output from the symbal table as it is built
{ ICODE_GENERATION = 'i',|/// Prints icode as it is generated
/7. }
Getopt makes this all work e
try enum Compl1lerChannelPreset
results.result = getopt(args QUIET = new CompilerfogChanne$[0],
" el 1l g P (9 VERBOSE = new CompilerlogChanna][@],
, "channel|c", &rawChannels DEBUG = [EnumMembers!CompilerLogChannel |
, "preset|p", &rawPreset }
config.passThrough
3. g.p g import capstone.utils : Channellogger; \
! alias CompilerlLogger = Channellogger! tl[ompilerf_og(hanneil, |Comp1' [erfhﬁnneEPreseth;
}
catch(GetOptException e){ /* ... */ }

Reuse and factorization of getopt options = win!

)gging with channe

./compliler --channel=tg

annelEnum, PresetEnum)

rResult parseArgs(ref string[] args)

otopt makes this all work

sult = getopt(args
mnel|c", &rawChannels
et |p", &rawPreset
.g.passThrough

_ e SEATE N e W N e |

L - . - -

enum CompllerLogChannel
{
TOKENIZING = 't', /// P
GRAMMAR_STEP = 'g', ///
SEMANTIC ANALYSIS 'e'
SYMBOL RESOLUTION 'y!
ICODE_GENERATION = '1i',

}

rints output from the tokenize
Prints output as the grammar i
/// Prints output from semanft
/// Prints output from the sy
/// Prints icode as 1t 1s gene

import std.traits : EnumMem;>\§;

enum CompllerChannelPreset

{

QUIET = new CompilerLogChanne\[0],
VERBOSE = new CompilerLogChann
DEBUG = [EnumMembers'CompilerlLogChannel]

}

(0],

T

import capstone.utils

: ChanneILogger;\\
alias CompilerLogger = ChanneILogger!(kOmpiIerLogChanneI,

-’ -‘-’IIII-_ . YM

class ChannellLogger(ChannelEnum, PresetEnum)

{
i A

static ChannellLoggerResult parseArgs(ref string[] args)

{

/] ...

oy Getopt makes this all work

{
results.result = getopt(args

, "channel|c", &rawChannels

, 'preset|p", &rawPreset
, config.passThrough

) ;

}
catch(GetOptException e){ /* ... */ }

- --channel=tg

enum CompilerLogChannel
{
TOKENIZING = 't', /// Pfints output from the tokenizer
GRAMMAR STEP = 'g', ///]Prints output as the grammar is walked
SEMANTIC ANALYSIS = 'e'} /// Prints output from semantic analysis
SYMBOL RESOLUTION = 'y'[/// Prints output from the symbol table as it is built
ICODE_GENERATION = 'i',}/// Prints icode as it is generated
}

import std.traits : EnumMem;>\§;
enum CompllerChannelPreset

{

QUIET = new CompilerLogChanne\[0],
VERBOSE = new CompilerLogChann&l[0],
DEBUG = [EnumMembers!CompilerLogChannel]

} \
import capstone.utils : ChannelLogger;\\

alias CompilerLogger = Channellogger! ([CompilerLogChannel|, |CompilerChannelPreset)) ;

-

- Putting it all together

void main(string[] args)

{

to logging = Compilerl . Args (); I
uto Logging = Comprlerlogger-parsehros(ares)i | Call opt parsing modules

if(logging. result.helpWanted || 1o.result.helpWanted)
{
import std.getopt : defaultGetoptPrinter;
defaultGetoptPrinter("Usage: " ~ args[0] ~ " <source file>", logging.result.options ~ io.result.options);
}
// Validate IO args kR
if(1o0.1inputs.length == 0) - c
returnError! (ErrorLevel .BAD_ARGS) ("no input file specified"); Use bU||t|n help
else if(io.inputs.length > 1)
returnError! (ErrorLevel .BAD_ARGS) ("multiple input files not supported");

N\

Misc. validation

Reuse and factorization of getopt options = win!

.’ 1140

10004
LU TN
LU
-a‘l*,,l“
; ‘i*lll'!1|

I‘r l|||'.|'n
™ “'nru
218

EPIC WIN

This is the face of an epic win

CanltBeSaturdayNow.com

Where was this in C++?

- After using D's getopt, I nerdraged from not
having something nice like it in C++...s0 1
wrote It. ;)

- https://qithub.com/ErichDonGubler/getopt

GetOpt: :GetOptResultAndArgs results;
try
{
results = GetOpt::getopt(argc, argv
, "1l]|length", &length
, "file|f", &data
, "verbose|v+", &verbosity
, "color|c|colour", &color
, "pretty|p", &usePrettyOutput);

}
catch(GetOpt: :GetOptException e)
{
cerr << e.what() << endl;
return 1;

}

GetOpt: :GetOptResultAndArgs results;
try
{

results = GetOpt::getopt(argc, argv
"l|length", &length
"file|f", &data
"verbose|v+", &verbosity
"color|c|colour"”, &color
"pretty|p", &usePrettyOutput);

- - - - b |

}
catch(GetOpt: :GetOptException e)

{

cerr << e.what() << endl;
return 1;

Why are these so nice?

- Reducing the reinvention of the wheel increases
productivity. |

- Employers and clients are willing to listen if you've got
it done, not necessarily if you've got things done
"right"...

- This is what happens with application development!

I The Machine Shop

. Sensible defaults =

- You can optimize later if you need to.

The Machine Shop

Quote from Walter:

When [was in London for the 2010 ACCU
(when the volcano stranded me there), I took
a chance to tour the Belfast cruiser sitting in
the Thames. One intereSting aspect of it was
the ship's machine shop. " . .

It was full of carefully selected machine tools. It
was pretty clear to me that an expert machinist
could quickly and accurately make or repair
about anything that broke oq’chat ship.

Sure, you can make do with fewer, more general
purpose machines. But it'll take you considerably
rnaer. and the result won't be as good. For
example, I've used electric drills for years. I was

the Thames. One interesting aspect of it was
the ship's machine shop.

It was full of carefully selected machine tools. It
was pretty clear to me that an expert machinist
could quickly and accurately make or repair
about anything that broke on that ship.

Sure, you can make do with fewer, more general
purpose machines. But it'll'take you considerably
longer, and the resultswon't*be @asgood. For
example, I've used electric drills for years. [was
never able to get it to drill a hole perfectly
perpendicular. I finally got a drl'll press, and
problem solved. Not only is it far more accurate,

it's much faster when you've got a lot of holes to
drill.

i preferto view D as a fully equipped machine
<riran with the rinht tonls for the rinht inh Yecg it

the Thames. One interesting aspect of it was
the ship's machine shop.

It was full of carefully selected machine tools. It
was pretty clear to me that an expert machinist
could quickly and accurately make or repair
about anything that broke on that ship.

Sure, you can make do with fewer, more general
purpose machines. But it'll'take you considerably
longer, and the resultswon't*be @asgood. For
example, I've used electric drills for years. [was
never able to get it to drill a hole perfectly
perpendicular. I finally got a drl'll press, and
problem solved. Not only is it far more accurate,

it's much faster when you've got a lot of holes to
drill.

i preferto view D as a fully equipped machine
<riran with the rinht tonls for the rinht inh Yecg it

Sure, you can make do with fewer, more general
purpose machines. But it'll take you considerably
longer, and the result won't be as good. For
example, I've used electric drills for years. I was
never able to get it to drill a hole perfectly
perpendicular. I finally got a drill press, and
problem solved. Not onl.y is it far more accurate,
it's much faster when you've got a lot of holes to
drill. ®

I prefer to view D as a fully equipped machine
shop with the right tools for the right job. Yes, it
will take longer to master it tha'n a simpler
language. But we're professienals, we program
all day. The investment of time to master it is
trivial next to the career productivity
improvement.

The Machine Shop

Quote from Walter:

When I was in London for the 2010 ACCU
(when the volcano stranded me there), I took
a chance to tour the Belfast cruiser sitting in
the Thames. One interesting aspect of it was
the ship's machine shop.

It was full of carefully selected machine tools. It
was pretty clear to me that an expert machinist
could quickly and accurately make or repair
about aﬂything that broke on that ship.

o

Sure, you can make'do With fewer, more general
purpose machines. But it'll take you considerably
longer, and the resultwon't be as good. For
exaMiple, I've uSed ele@tric @rills for years. I was
never able to get it to drill a hole perfectly
perpendicular. I finally got a drill press, and
problem solved. Not only is it far more accurate,
it's much faster when you've got a lot of holes to
drill. -

[prefer to view Daas a fully equipped machine
shop with the right tools for the right job. Yes, it
will take longer to master it than a simpler
language. But we're professionals, we program
all day. The investment of time to master it is
trivial next to the career productivity
improvement.

D tools: rdmd

- Lots of awesome tools for D
I've seen!

- rdmd is an excellent example

- No need for big compiler
commands

« Why is rdmd cool?

B o—
4

i

s £ o
ik v e i o art s
s L

Entry point

Command: rdmd -of"compiler.exe" compiler_main.d [args]

Generated using Gephi (http://gephi.github.io/)

Unit tests in a large project

enum Register

{

}

INVALID_REGISTER = -1,
//Data registers

RO,

R1,

R7,

PC,//Program Counter
SL,//Stack Limit
SP,//Stack Pointer
FP,//Frame Pointer
SB//Stack Base

unittest

{

writeln("Hello, world!");

import std.conv : to;
assert("RO".to!Register == Register.R0O);
assert(Register.FP.tolstring == "FP");

- I want to test just this module.
» But package root is the parent
directory!

rdmd -I.. -unittest -main vm.d

- I have no excuse but to test!

Another hack with contract programming

+ At one point during development, I became convinced that a bug
was in ane of my harder-to-debug madules because of how it was
called

+ Because of logging, it was easy to track where [was, but T didn't
wanl o insert a ton of code... ®

<izss ICodeGarerstor | Samplelogger

A TG of functi;s Fers
4F voosut which one is <he progtent D@

invaciznt

i
moart sto, srdlo ¢owritela:
writelni"Blooo!"

o]

Another hack with contract programming

- At one point during development, I became convinced that a bug

was in one of my harder-to-debug modules because of how it was
called

- Because of logging, it was easy to track where I was, but I didn't
want to insert a ton of code...

, class ICodeGenerator : SimpleLogger

{

// TONS of functions here
// ...but which one is the problem? D:

invariant

{
import std.stdio : writeln;
writeln("Bloop!");

class ICodeGenerator : SimplelLogger

{

// TONS of functions here
// ...but which one 1s the problem? D:

invariliant

{

import std.stdio : writeln;
writeln("Bloop!");

Last Opinions

- We, as the D community, shouldn't be afraid
to break stuff so it can make progress.
- Make transition easy as possible

- But give priority to language development

- Making D easy to get into will be essential for
D's adoption into mainstream.

N

t/

Conclusion

- D removes obstacles from your path, and
that makes development fast.

- D's standard library sets a new standard,
much like its predecessors.
- The fully-equipped machine shop!

- D's willingness to pioneer (which may
involve breaking occasionally) will be what
makes it better in the long run.

That's why I love D.)

D

p—

Forting Over to D

: Objectives

- Recount the discovery process of D et

features during my project
development

- What helped me really love D? i

+ Expose some cool D stuff!

—_—

Why | Love D: An Undergrad Experience

Erich Gubler

Credits

- Quote from Walter about the Belfast:
- http://forum.dlang.org/thread/
fbdeybmbxpbgyxflmvny@forum.dlang.or
? =3# .
ki59uk:24fjc:241:40digitalmars.com
- Images of the HMS Belfast:

- http://www.practicalmachinist.com/vb/
machinery-photos/machine-shop-hms-
belfast-173211/

- Countdown image
- http://www.iab.net/media/image/
ntdown1.j
- D Logo:

- https://github.com/D-Programming-

Language/dlang.org/blob/master/images/

dlogo.svg

