
DDMD AND AUTOMATED

CONVERSION FROM C++ TO D
Daniel Murphy (aka ‘yebblies’)

D
D

M
D

 - D
co

n
f1

5

1

ABOUT ME

 Using D since 2009

 Compiler contributor since 2011

D
D

M
D

 - D
co

n
f1

5

2

OVERVIEW

 Why convert the frontend to D

 What‟s so hard about it

 What happened to previous attempts

 How magicport works

 Future of (D)DMD

D
D

M
D

 - D
co

n
f1

5

3

WHY CONVERT THE FRONTEND TO D?

 “The point is not to use the compiler to stress test the
language. NOT AT ALL. The point is to improve the
compiler by taking advantage of what D offers.” –
Walter Bright

 D is much nicer to work with than C++

 Refactoring is easier

 Avoid wasting time on C++ limitations

 Take advantage of powerful features to improve
performance

D
D

M
D

 - D
co

n
f1

5

4

THE CHALLENGE

 Frontend is pretty big

 Currently ~120k lines

 Rapidly changing

 ~20 pull requests per week

 Inevitable problems make estimating time

difficult

 Pausing development for months is undesirable

D
D

M
D

 - D
co

n
f1

5

5

PAST APPROACHES

 Port by hand (original DDMD)

 Rewrite from scratch (SDC)

D
D

M
D

 - D
co

n
f1

5

6

HAND PORT

 Compiler is big

 More work added every day as pull requests are

merged

 Uncontrollable urge to refactor/rearrange

 High probability of introducing bugs

 Theoretically possible, never successfully finished

D
D

M
D

 - D
co

n
f1

5

7

RE-WRITE FROM SCRATCH

 Chance to do a clean, new design!

 Iron out errors in the spec

 Lose work done on implementing complex features
(but keep the test suite)

 Compiler is big

 Huge amount of work compared to direct porting

 SDC is being actively developed

 Completion time is uncertain

D
D

M
D

 - D
co

n
f1

5

8

A NEW APPROACH

 Automatically convert source

 Development continues non-stop on original

 Switch to D version only when generated code is

good enough

D
D

M
D

 - D
co

n
f1

5

9

AUTOMATIC CONVERSION – ATTEMPT 1

 Tokenize source (after pre-processing)

 Search and replace patterns

 id ‘->’ id becomes id ‘.’ id

 Simple to implement

 Gets 95% of the way there

D
D

M
D

 - D
co

n
f1

5

10

AUTOMATIC CONVERSION – ATTEMPT 1

 Source after pre-processing means only one platform
can be supported

 Last 5% is made entirely of special cases

 Even basic semantic analysis is very difficult

 Had to resort to hardcoding variable names for some
rules

 Too hard

 Gave up

 Could be used to assist hand porting

D
D

M
D

 - D
co

n
f1

5

11

AUTOMATED CONVERSION – ATTEMPT 2

 Parse C++ source

 Adjust AST

 Write out D source

 C++ is really hard to parse

 Really, really hard

 Pre-processor is not part of C++ (but we have to

parse it anyway)

D
D

M
D

 - D
co

n
f1

5

12

AIM LOWER

 Don‟t accept all C++ code

 Don‟t have to handle invalid code

 Build list of types before parsing

 What is a * b; ?

 Depends on what symbols a and b are

 Some tricky cases can be special-cased

 Don‟t support templates (except Array)

D
D

M
D

 - D
co

n
f1

5

13

MAKING THINGS EASIER

 We can cheat!

 Style can be normalized in C++ source

 Can change the source to use features that are

easier to convert

 Manually port tricky parts instead of supporting

more features

 Array

 SignExtendedNumber

D
D

M
D

 - D
co

n
f1

5

14

CONVENTIONAL WISDOM

 “My experience chiming in - never ever ever
attempt to refactor while translating. What
always happens is you wind up with a mess that
just doesn't work.” – Walter Bright

 Rules are different for automatic conversion

 Translating takes < 10 seconds

 If it doesn‟t work, throw away the result and try
again

D
D

M
D

 - D
co

n
f1

5

15

OUTCOME

 Lots of changes made to C++ source

 Automatic porting then worked on 97%

 10 files manually ported

 Templates

 Operator overloading

 OS/Memory/low level code

D
D

M
D

 - D
co

n
f1

5

16

MAGICPORT

 C++ to D source to source compiler

 Some very basic analysis of code

 D pretty printer

 ~6000 lines (of horrific hacks)

D
D

M
D

 - D
co

n
f1

5

17

LIMITATIONS

 Tool is single-use

 Makes lots of assumptions about code

 No variables have the same names as types

 Multi-var declarations will have a single type

 Many translations hard-coded

 #defined values become manifest constants

 Macros are re-written as template functions

D
D

M
D

 - D
co

n
f1

5

18

LEXING

 Tokenize source

 Very simple

 Assume ASCII

 Doesn‟t need to be efficient

 Recognize pre-processor constructs as tokens (e.g.

„#ifdef‟)

D
D

M
D

 - D
co

n
f1

5

19

TYPE LIST

 Scan through tokens looking for type names

 Match patterns

‘class’ ? ‘;’

‘struct’ ? ‘{‘

‘typedef’ ‘Array’ ‘<‘ ‘class’ ? ‘*’ ‘>’ ?
‘;’

 Build list to make parsing easier

D
D

M
D

 - D
co

n
f1

5

20

PARSING

 Parse our version of C++

 25% of total code

 Limited subset of C++

 E.g. Can‟t handle function pointer types in many places

 No error recovery

 Builds simplified AST

 a.b / a->b / a::b all produce a.b

D
D

M
D

 - D
co

n
f1

5

21

ANALYSIS

 Build lists of class declarations, call expressions,

etc.

 Check that all types in list are referenced

 Count declarations inside #ifdef blocks

 Remove duplicate declarations (typedef)

D
D

M
D

 - D
co

n
f1

5

22

MERGING

 Merge function declarations

 Take body from definitions

 Take default arguments from forward declarations

 Check for mismatches or duplicates

 Same thing for static member variables

D
D

M
D

 - D
co

n
f1

5

23

SPECIAL CASE

 Scope has a default constructor

 Automatically convert it to default member

initializers

D
D

M
D

 - D
co

n
f1

5

24

STRIP OUT DEAD DECLARATIONS

 #includes

 Empty version blocks

 #undef

 Include guards

 Default ctors

 „extern‟ function prototypes

D
D

M
D

 - D
co

n
f1

5

25

COLLECT DECLARATIONS

 Build hash map containing all top-level

declarations

 Use simple mangling scheme

 „function importHint‟

 „struct Loc‟

 „enum LINK‟

 Include parameter names for overloaded

functions

D
D

M
D

 - D
co

n
f1

5

26

D GENERATION

 List of modules and members in json file

 List of imports

 List of members (using mangled name)

 Extra D code (e.g. "extern (C++) Library

LibElf_factory();",)

 Write out each file

 Error on unknown declarations

 Error on unreferenced declarations

D
D

M
D

 - D
co

n
f1

5

27

#IFDEF ISSUES

 #if doesn‟t follow language grammar

if (x

#if SOMETHING

 && y

#endif

)

 Difficult to parse

 Sometimes impossible

D
D

M
D

 - D
co

n
f1

5

28

#IFDEF ISSUES

 Cheat!

 Just change the C++ source to something valid in

D

if (x && (!SOMETHING || y))

 Usually very straightfoward

 C++ code generally benefits from this too

D
D

M
D

 - D
co

n
f1

5

29

COMMENT ISSUES

 Can (and do) appear anywhere

if (x && y /*&& z*/) { }

if (x)

 /*doSomething()*/;

 Lots and lots of special cases to parse correctly

 Instead, parse the most common cases

 Remove rest from C++ source

D
D

M
D

 - D
co

n
f1

5

30

CONVERTS SUCCESSFULLY!

 Generated code doesn‟t compile

 Local variable shadowing is illegal in D

 Implicit narrowing conversion is an error

 Class handles don‟t convert to void pointers

 No implicit struct construction

e.g.

 void func(Loc loc);

 func(0);

D
D

M
D

 - D
co

n
f1

5

31

CAN‟T COMPILE

 D string literals are passed to varargs functions
as arrays

 D checks for goto skipping variable initializations
are much stricter that C++

 sizeof(arr)/sizeof(arr[0]) doesn't work in D

 #defines are not scoped

 String literals are type-checked
 char *s = ‚Don’t ever do this‛;

 All „fixed‟ in C++ source

D
D

M
D

 - D
co

n
f1

5

32

D‟S LIMITATIONS

 No struct default constructors

 Re-wrote structs so default initializers were all zero

(except Scope)

 version() is much less powerful than #if

 version(A || (B && C))

 Used static if instead

 No way to define data from command line

 Like –DNAME=VALUE

D
D

M
D

 - D
co

n
f1

5

33

IT COMPILES!

 But AST classes will need to be accessed from

C++ glue layer

 Added missing support for C++ classes

 Allowed non-virtual C++ member functions

 Allowed C++ member variables

 Now we can try linking against the glue layer

D
D

M
D

 - D
co

n
f1

5

34

C++ MANGLING ISSUES

 Linker error everywhere

 struct and class have different mangling

 C++ has three char types – which one to use?
 Defined our own utf8_t

 uint64_t is not always the same type
 unsigned long – freebsd64, linxu64, osx64

 unsigned long long - *32, win64

 size_t is not always the same type
 unsigned int – win32, linux32, freebsd32

 unsigned long – osx32

 Solution – drop osx32 dmd binary support

D
D

M
D

 - D
co

n
f1

5

35

C++ ABI ISSUES

 It then links, but crashes

 Member layout/alignment mismatches
 Generate code to check offsets

 Calling convention mismatches
 Fuzz tester

 vtbl layout (win32)
 Overloaded functions are reversed in vtbl

 Varargs problems
 Argument passing wrong on posix64 and win64

 va_copy doesn‟t work on posix64

D
D

M
D

 - D
co

n
f1

5

36

OTHER BACKEND BUGS

 ~8 codegen bugs found in DMD backend

 DMD is not idiomatic D

 Exercises a „new‟ subset

 Tough to reduce and tough to fix

D
D

M
D

 - D
co

n
f1

5

37

OUTSTANDING ISSUES

 FP returns broken on win32 (DMC and/or DMD)

 Still have struct passing bugs on posix64

 Constructor and destructor calls do not work

across language boundary

 All worked around!

D
D

M
D

 - D
co

n
f1

5

38

COSMETIC ISSUES

 D doesn‟t support out-of-class function definitions

 Move compiler passes to visitor interface

 Allows keeping layout the same in C++ and D

 Allows backends to add passes without modifying frontend

classes (sometimes)

 Minor array/string/comment formatting issues

 dfmt might be able to fix these one day

 Could just fix them after transition to D

D
D

M
D

 - D
co

n
f1

5

39

WHERE NEXT?

 Fix remaining performance issues
 ~20% hit due to compiling with DMD vs GCC

 Clean up generated code

 Wait for GDC/LDC to catch up to 2.067

 Delete C++ code and switch

 Port DMD glue layer to D

 Get GC working with DDMD
 Requires all allocations be done through GC

 Remove backend-dependent code from frontend

D
D

M
D

 - D
co

n
f1

5

40

PULL REQUESTS WILL BREAK

 Most can be automatically updated

 Rebase on top of last C++ commit

 Automatically convert to D

 Diff against first D commit

 Rebase on top of latest master

 Not significantly harder than rebasing to fix a

normal conflict

D
D

M
D

 - D
co

n
f1

5

41

TIMELINE

 Started experimenting – 2012

 Forum thread: „Migrating dmd to D?‟ – February 2013

 First commit – March 2013

 Zero link errors – June 2013

 All „compilable‟ tests pass – July 2013

 Self-hosts on win32 – July 2013

 Self-hosts on linux – December 2013

 Can use unpatched master as host and source –

February 2014

D
D

M
D

 - D
co

n
f1

5

42

TIMELINE

 Linux DDMD goes green on autotester – July 2014

 All platforms green on autotester – February 2015

 Magicport and manually ported source merged into

master – April 2015

 > 2 years

 398 pull requests – over 8% of total dmd pull request

D
D

M
D

 - D
co

n
f1

5

43

MAGICPORTING OTHER PROJECTS

 Must use a small, consistent subset of C++

 Need easy access to refactor the C++ source

 Doesn‟t rely too heavily on the preprocessor

 Must be comfortable debugging memory corruption
 This will get better in the future

 Must have good understanding of low-level C++
details

 Well worth the effort!

D
D

M
D

 - D
co

n
f1

5

44

QUESTIONS?

D
D

M
D

 - D
co

n
f1

5

45

