DRuntime and You

David Nadlinger (@klickverbot)
ETH Zurich









Agenda

. Warmup: Typelnfo and Modulelnfo
. Exception handling
- Garbage collection

» Thread-local storage
. Fibers

. Interlude: C program startup

- Shared libraries
» Linker-level dead code elimination (--gc-sections)



Packages

. object: Top-level module, imported automatically

. core.™: Userinterface, C standard library/operating system bindings
. etc.*: Also user-facing, currently just etc. linux.memoryerror

» gC.™: Garbage collector implementation

. rt.*: Compiler support code, runtime initialization

+ gcc”
. |ldc.*



class Typelnfo {

string toString(); bool equals(in void* pT,

size t toHash(); in void* p2);

int opCmp(Object o0); int compare(in void* pT,

bool opEquals(Object o0); 1n void* p2);

size_t getHash(in void* p); void swap(void* p1, void* p2);
void destroy(void* p);

TypeInfo next(); void postblit(void* p);

uint flags();
OffsetTypelnfo[] offT1();
vold[] init();
size t tsize(); void* rtInfo();
size t talign(); ¥



struct Modulelnfo {

string name(); void function() ictor();
uint flags(); void* xgetMembers();

void function() tlsctor(); uint index();

vold function() tlsdtor();

void function() ctor(); static int opApply(scope int
void function() dtor(): delegate(ModuleInfo*) dg);
vold function() unitTest(); }

ModuleInfo*[] importedModules();
TypeInfo_Class[] localClasses();



module foo.bar:

class C {
this() { x = 10; }
int x;

¥

void main() 1
auto ¢ = cast(C)0Object.factory("foo.bar.C");
assert(c !'1is null && c.x == 10);



Exception Handling

. Two main tasks: Stack unwinding, finding landing pads
(catch/finally/scopes with destructors)
» Compiler- and platform-specific

« DMD/Win32: Structured Exception Handling (SEH), rt.deh_win32
« DMD/Win64 and Posix: Custom implementation, rt.deh_win64_posix
» GDCand LDC (except Win64): libunwind does heavy lifting, we provide

personality function, see gcc.deh and 1dc.eh
» LDC/Win64: SEH, 1dc.eh?2

- Backtrace generation



Garbage collection

» Mark-and-Sweep collector:
» Mark phase: Transitively mark all reachable objects as live
.« Sweep phase: Free those allocations that have not been marked
(potentially also reclaim entire page, etc.)
- Potential GC roots:
. Stack
- (Shared) globals
. TLS globals
» (Explicitly added roots/ranges using core.memory.GC interface)



Thread-Local Storage (TLS)

test;
1nt myGlobal;

int foo() A
myGlobal;

}
« Linux x86 64 static TLS model:

_D4test3fooF/1:
mov eax, dword ptr fs:[_D4test8myGlobali@TPOFF ]
ret



Thread-Local Storage (TLS)

test;
1nt myGlobal;
int foo() {
myGlobal;
¥
» Linux x86_64 global dynamic TLS model:
_D4test3fooF/1:
lea rdi, qword ptr [rip + _D4test8myGlobali@TLSGD]
call __tls_get_addr@PLT
mov eax, dword ptr [rax]
pop rax

ret



TLSon OS X

OS X had native TLS only since 10.7 (which LDC requires), DMD has a

custom implementation:
« EmitTLS variablestonamed tls dataand tlscoal nt sections

» rt.sections_osx:
» getTLSBlock(): Lazily create pthreads TLS variable
» getTLSBlockAlloc(): Read that variable, if TLS not yet initialized
for this thread copy initializers from above sections
+ __tls_get_addr():Takes an address in either of the two sections,

translates it to thread-local copy. Calls emitted by compiler.



TLSon OS X

LDC on OS X:
» Use default LLVM implementation
» Need to use functions from dyld_priv.h to get GC ranges
» Might be a problem for App Store deployment?
» APl uses Apple-specific Blocks extension



Fibers

import core.thread : Fiber;

void f() {
writeln("In f(), yielding execution”),
Fiber.yield();
writeln(“"Back in f() again”),

}

auto fiber = new Fiber(&f):
fiber.call():

writeln(”In caller”):
fiber.call();



Fibers

. Cooperative, user-space multitasking
- Just save the registers to the stack, switch out stack and instruction
pointers, load registers from new stack

+ Need to keep TLS and EH intact (easy in theory; in practice however...)

int tlsGlobal = 42;

void bar() {
writeln(tlsGlobal);
Fiber.yield();
writeln(tlsGlobal);:

}



Pop quiz: You are writing a C program on GNU/Linux using GCC.
What's the name of the first function that is executed when your
program starts?



Pop quiz: You are writing a C program on GNU/Linux using GCC.
What's the name of the first function that is executed when your
program starts?

(Hint: It's not "main’))



GNU/Linux program startup

- loader calls _start, defined in glibc
 _startcalls __libc_start_main (glibc/csu/libc-start.c)
. Store stack end
. Set __environ
. Call global constructors (.ctors, __attribute__((constructor)))
- main(...)
. Call global destructors (.dtors, __attribute__((destructor)))



Recap

Need to determine:
» AllModulelInfos
. Stack region
- Global data segments (.data, .bss)
» TLS segments for each thread

» DMD: Exception handling tables



"0Old” module registration

+ _Dmodule_ref: Global linked list of ModuleInfo references

. Each object file adds its module using a (C) global constructor

- Simple, portable, does not need any special compiler support

» Still used by LDC on platforms without shared library support, on
Solaris/Android/other Posixen by DMD

 For GCranges, just use _bss_start, _end, et al.

» DMD: Bracketing symbols for EH tables

« However: Shared libraries



Shared libraries

» Only applies to Posix/ELF for now

- Different use cases:
» D program linking to D shared libraries
» D program loading D shared libraries at runtime
» Cprogram linking to D shared libraries
 Cprogram loading D shared libraries at runtime

. All require use of shared druntime/Phobos



Module conflict detection

. Want to prohibit defining same D module in two different images,
chaos would ensue
- Idea: When loading a shared library:
. |terate through all ModuleInfo references
. For each of them check if the address is in the current image
- If not, dynamic linker has merged it with same module in other
library, fail

» Problem: Copy relocations



Detour: Copy relocations

- What if you have a non-PIC executable (position-dependent code)...
- ...that references a data symbol defined in a shared library it links to?

» FiX:
- Allocate space in the executable's .bss section
» When loading library, copy symbol from library into that memory
» Fix up references in library, which is built with PIC

. Breaks our simple module conflict detection!



Module conflict detection, v2

- Want to prohibit defining same D module in two different shared
libraries, chaos would ensue
- Idea: When loading a shared library:
. |terate through all ModuleInfo references
» For each of them check if the address is in the current image or in
the main executable’s BSS section
- If not, dynamic linker has merged it with same module in other
library, fail

.+ Seems innocent enough, but we'll have fun due to linker bugs



Design constraints

. Want to stay on LLVM IR level for tooling and ease of use
- Cannot emit arbitrary relocations
« Custom linker scripts are out
» LLVM IR does not support COMDAT symbols in custom sections
(arguably a bug, certainly an arbitrary limitation)



_d_dso_registry: _minfo_beg

foo Modulelnfo

) ChECkS WhEther D50 haS oar Modulelnfo ldc.dso_initialized

already been registered vaz Modulelnfo
. Usesdl_iterate_phdr to _minfo_end

locate data/TLS segments

o ldc.dso_ctor.3foo ldc.dso_ctor.3baz

« Checks module collisions ldc.dso_dtor ldc.dso_dtor
- Registers module with global dedso. ctor 3bar

list, runs constructors, etc. dc.dso_dtor

a.o oX0)

druntime | executable



--gc-sections

- Linker-level removal of object file sections that are not referenced by
any other code (certain sections are roots, see KEEP in ld --verbose)
- Idea: Put each function/variable into its own section

« Do not want linker to remove Modulelnfo references in .minfo, for DMD
also custom EH tables

» Custom linker script breaks just using gcc to link, other tooling

- |d.gold merges COMDATs before checking their dependencies



--gc-sections
« Unsolved in DMD, WONTFIX for GDC

» Having one .ctor per module (LDC) naturally solves this, pin the
ModuleInfo there

» Because of a bug in Id.bfd, cannot use __bss_start, _end are made
local to the main executable; have weak _d_execBss{Beq, End}Addr

» LDC binaries (static runtime, release mode) are typically =V as big as
DMD built ones, =% the size of default GDC binaries

- Possible alternative: Whole program/link time optimization



Resources

 OS X open source tools:
. System linker: http://opensource.apple.com/source/ld64
» Runtimer linker/loader: http.//opensource.apple.com/source/dyld

» (Linux) linker internals: nttp.//www.airs.com/blog/archives/38
« Linux TLS: http.//www.akkadia.org/drepper/tls.pdf

. Windows TLS: http.//www.nynaeve.net/’tag=tls

» Issues with migrating fibers across threads: LDC GitHub #666
. Relevant dlang Bugzilla issues: 879, 113/8, 13025






