T IIr
CISCO.

Behaviour-Driven
Development with D and
Cucumber

@atilaneves
Atila Neves, PhD
Cisco Systems
DConf 2015

Outline

My Software Testing Journey

TDD - what it is, what it’s for, how it’s done
Cucumber: a BDD framework

BDD - how it expands on TDD

Short BDD example

Writing command-line D programs in BDD fashion

vV vV v v v v .Y

Using Cucumber to drive D code for integration / system / acceptance testing

My Software Testing Journey

Manual testing. Once.
Learned about JUnit and UTs in 2003

Confusion about the different types of testing

UTs for all production code
TDD

Automated defect discovery of unit-testable code, but other bugs still
emerging

vV v v v v Y

Unit Tests: my definition

Unit tests are automated.

Unit tests are small.

Unit tests are independent of one another.

Unit tests only use the CPU and RAM. No contact with the outside world.

Unit tests are fast (<10ms).

vV v v v v Y

Unit tests are repeatable, deterministic, fast and easy.

» Compile-time?

TDD: a way to unit test

» Write the test before, not after, the code to be tested

Why TDD?

vV vV v v v v .Y

Confidence that the production code works as intended
Runnable documentation

Lower coupling in the code under test

It can often be easier to write a test than production code
Can help with the design of a software system

Reduces the possibility of bugs in the test code

Good code coverage

TDD shortcomings

A good fit for the mental model of certain people, but not everyone
Not indicated when exploratory programming is desired or the only option

Should however be mandatory for bug fixing

vV v v Vv

The most important thing is to write the tests, whether before or after the
production code

But not all code is unit-testable...

» Production code tends to do pesky things like use the file system, send/
receive packets, talk to DBs...

Real code deals with the real world, which is messy.

» Layered testing approach: lower-level tests before the higher-level ones:
unit, integration, system, acceptance.

» D has built-in unit tests, as well as a few unit testing libraries

» What to use for higher-level tests?
The Automation Pyramid

Coverage 4 Ul
Maintenance S—
Fragility y ” API
Duration 4

et A UNIT

number of tests

» Uses its own DSL called Gherkin

» Features are written and described in plain text, then mapped to Ruby code

cucumber

blocks with regular expressions

Cucumber: feature example

Feature: Calculator
As a calculator user
| want to add, multiply and divide numbers

So | can do simple maths quickly

Scenario: Adding two numbers
Given a calculator
When the calculator adds 3 and 4

Then the calculator returns 7

Cucumber: step definitions

Given(/a calculator/) do
@calc = Calculator.new

end

When(/the calculator adds (\d+) and (\d+)/) do |x, y|
@calc.add(x.to_i, y.to_i)
end

Then(/the calculator returns (\d+)/) do |x|
expect(@calc.result).to eq(x.to_i)

end

Aruba: A Cucumber plugin

» Built-in step definitions for testing command-line programs
» Manipulation of filesystem state, reset after every test

» Creates and manipulates files in a sandbox

Sample Cucumber/Aruba feature

Feature: Adder

Scenario: Correct sum
Given a file named "adder.d" with:
import std.stdio, std.conv;
void main(string[] args) {
writeln("The sum of *, args[1], " and °, args[2], " is ",
args[1].tolint + args|[2].tolint);
}

When | run ‘rdmd adder.d 2 3
Then the output should contain:

The sumof2and 3is 5

The BDD Cycle

Acceptance Test

BDD example: feature

Feature: Control request

As a protocol client

| want to get a response from my control request message
So that | can initiate a probe

Scenario: Handshake V2
Given | have started the responder
When | send a CONTROL REQUEST V2 message
Then | should successfully receive a CONTROL RESPONSE V2 message

BDD: 15t feature pending

1 scenario (1 undefined)
3 steps (3 undefined)
0m0.003s

You can implement step definitions for undefined steps with these snippets:

Given(/"| have started the IPSLA responder$/) do
pending # express the regexp above with the code you wish you had

end

When(/"I sent a CONTROL REQUEST message$/) do
pending # express the regexp above with the code you wish you had
end

Then(/"1 should receive a CONTROL RESPONSE message$/) do
pending # express the regexp above with the code you wish you had

end

BDD: 15t feature failing

Scenario: Positive test # features/request.feature:6

Given | have started the IPSLA responder # features/step_definitions/steps.rb:27
No such file or directory - bin/ipsla_responder (Errno::ENOENT)
./features/step_definitions/steps.rb:13:in "popen’
./features/step_definitions/steps.rb:13:in "run_responder’
./features/step_definitions/steps.rb:28:in " /"I have started the IPSLA responderS/’
features/request.feature:7:in “Given | have started the IPSLA responder’

When | send a CONTROL REQUEST message # features/step_definitions/steps.rb:63

Then | should receive a CONTROL RESPONSE message # features/step_definitions/steps.rb:67

Failing Scenarios:

cucumber features/request.feature:6 # Scenario: Positive test

1 scenario (1 failed)
3 steps (1 failed, 2 skipped)

BDD: The first unit test

const(ubyte)[] bytes(ubyte ctrlVersion = 2, ushort status = 0) {
ubyte status1 = status >> 8;
ubyte statusO = cast(ubyie)(status & 0xff);
return
[ctrlVersion, O, status1, status0] ~ // ver8, reserved8, status16
[0, 0,0, 0] ~//seqno

}

void testVersion() {
IpslaControlV2(bytes).ctrlVersion.shouldEqual(2);
IpslaControlV2(bytes(3)).ctrlVersion.shouldEqual(3);

Advantages of BDD

Fully (mostly) tested code

>

» When a feature is green, it’s implemented
» Forces the code to do “real work” early

>

Code tends to be less crufty: YAGNI is enforced by the process

Disadvantages of BDD

It takes longer to write code

>

» More complicated than TDD

» Has the same problem TDD has with exploratory coding
>

Like TDD, also isn’t for everyone

How to implement step definitions in D?

>

>

Cucumber defines a JSON wire protocol to interface with other languages
» Asks the server to tell it which steps exist
» Asks the server to execute certain steps and report results

The wire protocol is defined... using Cucumber!

Unencumbered is a Cucumber wire protocol implementation in D
» https://github.com/atilaneves/unencumbered

Uses UDAs and compile-time reflection to link steps with code

» Similar to the Python and Java implementations

Sample from the “definition”of the wire protocol

Scenario: Invoke a step definition which passes
Given there is a wire server running on port 54321 which understands the following protocol:
| request | response |

| ['step_matches",{"name_to_match":"we're all wired"}] | ["success",[{"id":"1", "args":[]}]] |

['"begin_scenario"]	["success"]
["invoke" {"id":"1","args":[1}]	["success"]
["end_scenario"]	["success"]

When | run “cucumber -f progress’

And it should pass with:

1 scenario (1 passed)

1 step (1 passed)

Unencumbered: Write Cucumber step
definitions in D

» Unencumbered is a Cucumber wire protocol implementation in D
» https://github.com/atilaneves/unencumbered
» Uses UDAs and compile-time reflection to link steps with code

» Similar to the Python and Java implementations

Calculator calc;

@Given(r'*a calculator$") void initCalculator() { calc = Calculator(); }

@And(r"*the calculator adds up ([0-9.]+) and ([0-9.]+)$")
void andAddsUp(double a, double b) { calc.add(a, b); }

@Then("the calculator returns "(.+)")

void thenReturns(double a) { assert(closeEnough(calc.result, a)); }

How does the server know about the
steps?

import cucumber.server,

shared static this() {
runCucumberServer!"iesis. calculator.steps” (54321, Yes.details);

}

How are the found functions stored?

» Several functions with different types and arity, what’s the common type?
» Easy solution: void function(string[])[] steps;

@AnNd(...)
void andAddsUp(string[] args) {
calc.add(args[1].toldouble, args[1].toldouble);

}
» Can’t the compiler write the boilerplate for me? (it’s D, so umm.. yeah)
» For each step, count the number of capturing parentheses
» Statically reflect on the arity and types of the input parameters
» mixin('steps ~= Step((cs) { andAddsUp(cs[0].to!double, cs[1].to!double) }, ...");
» Profit!

D Goodies

» Compile-time checks

» If the capturing parentheses don’t match the function arity:

» Error: static assert "Arity of andAddsUp (2) does not match the number of capturing parens
(3) in “the calculator adds up ([0-9.]+) and ([0-9.]+)()$"

» If the regex is not valid:

» Error: uncaught CTFE exception std.regex.internal.ir RegexException("Unmatched
"Y'\xOaPattern with error: “*the calculator adds up ([0-9.]+) and ([0-9.]+))" <--HERE-- "$™"c)

» D exceptions

» I'm an exception (tests.calculator.steps.MyCustomException from localhost:54321)

Further work

» Unencumbered could be a D-only alternative implementation
» Pull requests welcome

» Lambdas?
» Having to name the step functions is tedious, as is the return type

» Java’s solution doesn’t work in D: UDAs must apply to something

