
Behaviour-Driven
Development with D and

Cucumber
@atilaneves

Átila Neves, PhD

Cisco Systems

DConf 2015

Outline

!  My Software Testing Journey

!  TDD – what it is, what it’s for, how it’s done

!  Cucumber: a BDD framework

!  BDD – how it expands on TDD

!  Short BDD example

!  Writing command-line D programs in BDD fashion

!  Using Cucumber to drive D code for integration / system / acceptance testing

My Software Testing Journey

!  Manual testing. Once.

!  Learned about JUnit and UTs in 2003

!  Confusion about the different types of testing

!  UTs for all production code

!  TDD

!  Automated defect discovery of unit-testable code, but other bugs still
emerging

Unit Tests: my definition

!  Unit tests are automated.

!  Unit tests are small.

!  Unit tests are independent of one another.

!  Unit tests only use the CPU and RAM. No contact with the outside world.

!  Unit tests are fast (<10ms).

!  Unit tests are repeatable, deterministic, fast and easy.

!  Compile-time?

TDD: a way to unit test

!  Write the test before, not after, the code to be tested

Why TDD?

!  Confidence that the production code works as intended

!  Runnable documentation

!  Lower coupling in the code under test

!  It can often be easier to write a test than production code

!  Can help with the design of a software system

!  Reduces the possibility of bugs in the test code

!  Good code coverage

TDD shortcomings

!  A good fit for the mental model of certain people, but not everyone

!  Not indicated when exploratory programming is desired or the only option

!  Should however be mandatory for bug fixing

!  The most important thing is to write the tests, whether before or after the
production code

But not all code is unit-testable...

!  Production code tends to do pesky things like use the file system, send/
receive packets, talk to DBs...

!  Real code deals with the real world, which is messy.

!  Layered testing approach: lower-level tests before the higher-level ones:
unit, integration, system, acceptance.

!  D has built-in unit tests, as well as a few unit testing libraries

!  What to use for higher-level tests?

!  BDD tool written in Ruby

!  Uses its own DSL called Gherkin

!  Features are written and described in plain text, then mapped to Ruby code
blocks with regular expressions

Cucumber: feature example

Feature: Calculator

 As a calculator user

 I want to add, multiply and divide numbers

 So I can do simple maths quickly

 Scenario: Adding two numbers

 Given a calculator

 When the calculator adds 3 and 4

 Then the calculator returns 7

Cucumber: step definitions

Given(/a calculator/) do

 @calc = Calculator.new

end

When(/the calculator adds (\d+) and (\d+)/) do |x, y|

 @calc.add(x.to_i, y.to_i)

end

Then(/the calculator returns (\d+)/) do |x|

 expect(@calc.result).to eq(x.to_i)

end

Aruba: A Cucumber plugin

!  Built-in step definitions for testing command-line programs

!  Manipulation of filesystem state, reset after every test

!  Creates and manipulates files in a sandbox

Sample Cucumber/Aruba feature
Feature: Adder

 Scenario: Correct sum
 Given a file named "adder.d" with:
 """
 import std.stdio, std.conv;
 void main(string[] args) {
 writeln(`The sum of `, args[1], ` and `, args[2], ` is `,
 args[1].to!int + args[2].to!int);
 }
 """
 When I run `rdmd adder.d 2 3`
 Then the output should contain:
 """
 The sum of 2 and 3 is 5
 """

The BDD Cycle

BDD example: feature

Feature: Control request

 As a protocol client

 I want to get a response from my control request message

 So that I can initiate a probe

 Scenario: Handshake V2

 Given I have started the responder

 When I send a CONTROL REQUEST V2 message

 Then I should successfully receive a CONTROL RESPONSE V2 message

BDD: 1st feature pending

1 scenario (1 undefined)

3 steps (3 undefined)

0m0.003s

You can implement step definitions for undefined steps with these snippets:

Given(/^I have started the IPSLA responder$/) do

 pending # express the regexp above with the code you wish you had

end

When(/^I sent a CONTROL REQUEST message$/) do

 pending # express the regexp above with the code you wish you had

end

Then(/^I should receive a CONTROL RESPONSE message$/) do

 pending # express the regexp above with the code you wish you had

end

BDD: 1st feature failing
 Scenario: Positive test # features/request.feature:6

 Given I have started the IPSLA responder # features/step_definitions/steps.rb:27

 No such file or directory - bin/ipsla_responder (Errno::ENOENT)

 ./features/step_definitions/steps.rb:13:in `popen'

 ./features/step_definitions/steps.rb:13:in `run_responder'

 ./features/step_definitions/steps.rb:28:in `/^I have started the IPSLA responder$/'

 features/request.feature:7:in `Given I have started the IPSLA responder'

 When I send a CONTROL REQUEST message # features/step_definitions/steps.rb:63

 Then I should receive a CONTROL RESPONSE message # features/step_definitions/steps.rb:67

Failing Scenarios:

cucumber features/request.feature:6 # Scenario: Positive test

1 scenario (1 failed)

3 steps (1 failed, 2 skipped)

BDD: The first unit test

const(ubyte)[] bytes(ubyte ctrlVersion = 2, ushort status = 0) {

 ubyte status1 = status >> 8;

 ubyte status0 = cast(ubyte)(status & 0xff);

 return

 [ctrlVersion, 0, status1, status0] ~ // ver8, reserved8, status16

 [0, 0, 0, 0] ~ // seq no

 ...;

}

void testVersion() {

 IpslaControlV2(bytes).ctrlVersion.shouldEqual(2);

 IpslaControlV2(bytes(3)).ctrlVersion.shouldEqual(3);

}

Advantages of BDD

!  Fully (mostly) tested code

!  When a feature is green, it’s implemented

!  Forces the code to do “real work” early

!  Code tends to be less crufty: YAGNI is enforced by the process

Disadvantages of BDD

!  It takes longer to write code

!  More complicated than TDD

!  Has the same problem TDD has with exploratory coding

!  Like TDD, also isn’t for everyone

How to implement step definitions in D?

!  Cucumber defines a JSON wire protocol to interface with other languages

!  Asks the server to tell it which steps exist

!  Asks the server to execute certain steps and report results

!  The wire protocol is defined... using Cucumber!

!  Unencumbered is a Cucumber wire protocol implementation in D

!  https://github.com/atilaneves/unencumbered

!  Uses UDAs and compile-time reflection to link steps with code

!  Similar to the Python and Java implementations

Sample from the “definition”of the wire protocol

 Scenario: Invoke a step definition which passes

 Given there is a wire server running on port 54321 which understands the following protocol:
 | request | response |

 | ["step_matches",{"name_to_match":"we're all wired"}] | ["success",[{"id":"1", "args":[]}]] |

 | ["begin_scenario"] | ["success"] |

 | ["invoke",{"id":"1","args":[]}] | ["success"] |

 | ["end_scenario"] | ["success"] |

 When I run `cucumber -f progress`

 And it should pass with:

 """

 .

 1 scenario (1 passed)

 1 step (1 passed)

 """

Unencumbered: Write Cucumber step
definitions in D
!  Unencumbered is a Cucumber wire protocol implementation in D

!  https://github.com/atilaneves/unencumbered

!  Uses UDAs and compile-time reflection to link steps with code

!  Similar to the Python and Java implementations

Calculator calc;

@Given(r"^a calculator$") void initCalculator() { calc = Calculator(); }

@And(r"^the calculator adds up ([0-9.]+) and ([0-9.]+)$")

void andAddsUp(double a, double b) { calc.add(a, b); }

@Then(`^the calculator returns "(.+)"`)

void thenReturns(double a) { assert(closeEnough(calc.result, a)); }

How does the server know about the
steps?

import cucumber.server;

shared static this() {

 runCucumberServer!"tests.calculator.steps"(54321, Yes.details);

}

How are the found functions stored?

!  Several functions with different types and arity, what’s the common type?

!  Easy solution: void function(string[])[] steps;
@And(...)

void andAddsUp(string[] args) {

 calc.add(args[1].to!double, args[1].to!double);

}

!  Can’t the compiler write the boilerplate for me? (it’s D, so umm.. yeah)

!  For each step, count the number of capturing parentheses

!  Statically reflect on the arity and types of the input parameters

!  mixin(`steps ~= Step((cs) { andAddsUp(cs[0].to!double, cs[1].to!double) }, ...`);

!  Profit!

D Goodies

!  Compile-time checks

!  If the capturing parentheses don’t match the function arity:

!  Error: static assert "Arity of andAddsUp (2) does not match the number of capturing parens
(3) in ^the calculator adds up ([0-9.]+) and ([0-9.]+)()$“

!  If the regex is not valid:

!  Error: uncaught CTFE exception std.regex.internal.ir.RegexException("Unmatched
')'\x0aPattern with error: `^the calculator adds up ([0-9.]+) and ([0-9.]+))` <--HERE-- `$`"c)

!  D exceptions

!  I'm an exception (tests.calculator.steps.MyCustomException from localhost:54321)

Further work

!  Unencumbered could be a D-only alternative implementation

!  Pull requests welcome

!  Lambdas?

!  Having to name the step functions is tedious, as is the return type

!  Java’s solution doesn’t work in D: UDAs must apply to something

