Random Number Generation
in Phobos and beyond

Joseph Wakeling
(WebDrake)

q
Anyone who
considers
arithmetical
methods of
producing random
digits is, of course,

in a state of sin
9

(John von Neumann, 1946)

The (pseudo-random) essentials

Random number generators are
at heart defined by a few simple
elements:

* a state variable s with initial MyState state;
value s,
* a (pure) generation algorithm front () { .. }

mapping state to the
corresponding value (variate)

 a (pure?) transition algorithm S popFront () { .. }
mapping each state to the next

Sk+1 = S(Sk)

A Phobos RNG range

LinearCongruentialGenerator (UIntType, UIntType a, UIntType b, UIntType m)

UIntType X; // the state variable

empty = ; // an RNG never runs out

UIntType front() @
{

return x; // in this case, the mapping state => variate is very simple

}

popFront ()

X =(a*x+c) % // the transition function

typeof (this) save() @ // only possible with pseudo-RNGs
{

return this;

}

D In action

std.random, std.stdio;

main()
Mt19937 gen; // uniform random number generator

gen.seed(unpredictableSeed()); // seed non-deterministically
// generate uniformly-distributed variates

foreach (i; ..) {
writeln(uniform! (L, 6, gen));

}

// note that uniform() does not provide a range!

An alternative PoV:
the C++11 standard

 Distinguishes between random engines, random devices, and
random distributions

 Random engines are sources of uniformly-distributed
pseudo-random bits

 Random devices are sources of uniformly-distributed non-
deterministic random bits

* Random distributions map uniformly-distributed random
bits to other types (integers, floating-point, ...) such that the
resulting values follow a specified probability distribution

An alternative PoV:
the C++11 standard

» whether engine or device, C++11 RNGs are function objects
(i.e. defining operator ()) returning unsigned integer
values

- 1.e. one function both returns the generated value and “pops” the
generator

— contrast with D’s separate front () and popFront ()

e C++11 random distributions are function objects whose
operator () method accepts an RNG parameter passed by
ref

— contrast with D’s uniform which is simply a function

C++111n action

main()

std::random device rd; // random device used for seeding
std::mt19937 engine; // generator of pseudo-random bits

engine.seed(rd()); // seed from random device
std::uniform int distribution< > distribution(l, ©); // random distribution
// use-case 1: call distribution directly, passing engine by ref
for (i=20; 1ic¢< ; t+i) {
std::cout << distribution(engine) << std::endl;
}
// use-case 2: bind distribution and engine together
auto six sided die = std::bind(distribution, engine);
for (i=20; 1< 10; ++1i) {

std::cout << six sided die() << std::endl;

}

C++11 vs D functionality

e C++11 <random>

wide range of random number engines, implemented as function objects
random device class for non-deterministic random bits
wide selection of random distributions (uniform, exponential, normal, ...)

random adaptors (random number engines that transform the output of other, “base” engines)

e Dstd.random

good selection of random number engines (different from C++11), implemented as forward
ranges

 “thread-global” default RNG instance rndGen
unpredictableSeed

no random distributions apart from uniformand uniform01

randomCover, randomSample, randomShuffle

RNGs and range dynamics

... this is where it starts to go wrong :-(

Wrapping RNGs causes problems

std.random, std.range, std.stdio;
main ()

Mt19937 gen;
gen.seed(unpredictableSeed());

gen.take(10).writeln; // these two uses of the RNG
gen.take(10).writeln; // both produce the same result!

iota(!0).randomCover(gen).writeln; // so do these two:
iota(10).randomCover(gen).writeln; // every time.

// but these two produce different results
iota(!0).map!(a => uniform(, , gen)).writeln;
iota(!0).map!(a => uniform(, , gen)).writeln;

Similar inconsistencies in C++11

main ()

std::random device rd;
std: :mt19937 engine;
engine.seed(rd());

std::uniform real distribution< > distl(
std::uniform real distribution< > dist2(

// these two loops produce different results
for (i=20; 1i¢< ; ++i) {
std::cout << distl(engine) << << dist2(engine) << std::endl;

}

// the two different bindings produce identical results
genl = std::bind(distl, engine);
gen2 = std::bind(dist2, engine);

for (i=20; 1¢< ; ++i) {
std::cout << genl() << << gen2() << std::endl;

}

C++11vs D problems

* std::bind results in a copy-by-value ...

— ... but because C++11 works with function objects, we
can always pass an RNG by reference

* with ranges that take another range input, we are
always going to get “bind”-like effects

// typical phobos range handling
Consumes (Source)
1f (isInputRange!Source)

Source source_;

this(Source source)

{

this.source = source;

}

A workaround — always freshly seed?

std.random, std.range, std.stdio;
main()
// These two calls produce different results

iota () .randomSample(0, Random(unpredictableSeed)).writeln;
iota () .randomSample(0, Random(unpredictableSeed)).writeln;

The above solution “works”, and reflects C++11 recommendations
when using std::bind, but I don’'t like it:

it relies on programmer virtue

it’s annoyingly verbose

interferes with reproducibility of program results
(OK, OK, there are ways round this).

rndGen to the rescue?

/ **

* Thread-global (i.e. global and thread-local) singleton
* instance of default pseudo-random number generator

*/

Random rndGen()

std.algorithm : map;
std.range : repeat;

Random result;
initialized;
if (!initialized) {
// (missing out one more complex seeding option)
result = Random(unpredictableSeed);
initialized = true;
}

return result;

rndGen to the rescue?

RandomCover (Range, UniformRNG =) {
Range _input;
_current, alreadyChosen = 0;

if (is(UniformRNG ==)) {
this(Range input) {
_input = input;
// no RNG copied internally in this case
}
} else {
UniformRNG _rng;

this(Range input, ref UniformRNG rng) {
_input = input;
_rng = rng; // if UniformRNG is a struct, copies by value
// etc.

to be continued

rndGen to the rescue?

RandomCover (Range, UniformRNG =
// ... continuing

popFront () {
// ... missing a bunch of details
k = input.length - alreadyChosen;
foreach (e; _input) {
if (is(UniformRNG ==)) {
// uses rndGen
chooseMe = uniform(0, k) == 0;
} else {
// uses copied RNG instance
chooseMe = uniform(0, k, _rng) ==

rndGen to the rescue?

std.random, std.range, std.stdio;

main()
rng

// these
iota(10)
iota(l0).

// these
iota(1l0).
iota(1l0).

= Random(unpredictableSeed);

two calls produce the same results

.array.randomCover (rng).writeln;

array.randomCover(rng).writeln;

two calls produce different results
array.randomCover.writeln;
array.randomCover.writeln;

A slightly more generic static

StaticRNG(UniformRNG)
if (isUniformRNG!UniformRNG)

UniformRNG rng ;

4

isUniformRandom UniformRNG. isUniformRandom;
min() return rng .min; }
max() return rng .max; }
empty () { return rng .empty;
front () { return rng .front;
popFront() { rng .popFront(); }

if (isSeedable!UniformRNG)

seed(Seed) (Seed s) { rng .seed(s); }

Reference-type RNGs

Use RefRange or RefCounted RNG instances

— problem: currently isUniformRNG fails for RefRange !Random, RefCounted!
Random etc. (probaby easy to fix)

— relies on user virtue (i.e. knowing to use RefRange or RefCounted, and why)
Implement RNGs as (final) classes (hap.random)

— easy reference type semantics

— also simplifies other RNG-related functionality like randomCover, randomSample

— problem: by default on the heap; creates potential allocation/GC issues
e more of an issue for random{Cover, Sample} and future random distributions

— problem: un-idiomatic for Phobos?

Implement as structs, but have reference type internal state
— annoying to implement

— still have potential allocation issues

... but solving the copy-by-value problem is not sufficient :-(

Problematic function assumptions

doSomething(Range) (
if (isForwardRange!Range)

rcopy = r.save;

// do stuff with rcopy, because hey, it couldn’t
// be bad to not consume the original range, right?

}

// REAL example:

rng = new ClassBasedRNG(unpredictableSeed);
cartesianProduct(rng.take(2), iota(2)).writeln;
cartesianProduct(rng.take(2), iota(2)).writeln;
// produces identical output both times

// cartesianProduct used to .save only the first
// of its arguments, now saves both

Forward or Input? Or ...7

e Currently all std.random pseudo-RNGs are implemented as forward
ranges

— a natural assumption for any deterministic sequence where current state can
be saved?

— trouble is, even a pseudo-RNG is supposed to seem non-deterministic to its
callers

— Phobos functions make strong assumptions about deterministic meaning of
forward ranges

 Alternative: InputRange with different method (. dup?) for explicit
copying?

— in truth, pseudo-RNGs — equivalent to random number engines in C++11 — sit
in between Input and Forward ranges

The key issues

 We have a great collection of RNG algorithms, but ...

e Value-type and/or forward range RNGs create far too many
circumstances where RNGs get copied without meaning to

— risk of far too many unintentional correlations

e Relying on programmer virtue to know how to work around these
issues is not a viable long-term solution

» Already, handling these issues often leads to finnicky workarounds
(e.g. special treatment of rndGen)

 We need RNG functionality where the easy and obvious thing to do
is also the statistically correct thing to do

Where (I think) we should be going

e Reference-type, input-range RNGs
— with .dup for random engines

— lots of nice functionality becomes much easier to implement
(randomCover, randomSample, random distributions...)

— the challenge here is managing allocation and stack vs. heap issues

 Clearer definitions & separations between different aspects of random
number generation

- range-based equivalents to C++11’s engines, devices and distributions

— distributions in particular are sorely missed

» For some (incomplete!) sketches in the above directions, take a look at
hap.random: https://github.com/WebDrake/hap

Thanks for listening!

Questions, observations, ideas?

Oh, and — sociomantic is hiring!

www.sociomantic.com/careers

https://github.com/WebDrake/hap

	Slide 1
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

