WEKA 10O

Using D for Development
of Large Scale Primary Storage

Liran Zvibel
Weka.lO, CTO

liran@weka.io

@liranzvibel


mailto:liran@weka.io

°d €102 @

What are we doing

O "42Y233|4 Siuu

Our Infrastructure in D

Challenges

X B
A~

uoojie)/iaurjeusnordiysiapea e ad

Working Together
Q&A

TR

Even before they ordered their lattes, Larry sensed
that Pastor Jim might have an agenda.

\,VEI(A,iO D for primary storage




About Weka.lO

Israeli based

Defining the future of software defined, scale out storage for the

cloud-based datacenter
VC backed company (NVP, Gemini), largest round-A of 2014
Currently 20 engineers, many XIV veterans.

Started developing in D early 2014

D project size: 120k loc, internal code: 113k loc [400/380 modules], 13
packages with package.d files.

\,VEI(A,iO D for primary storage




Storage system requirements

Extremely reliable, “always on”.

High performance data path, measured in psecs
Complicated “control path”/“management code”
Distributed nature due to HA requirements

Low level interaction with HW devices

Some kernel-level code, some assembly

Language has to be efficient to program, and fit for

large projects

WEKA.IO D for primary storage




What did we do previously?

C codebase

A lot of auto-generated code from XML for RPC, clustering code
and external APIs (CLI, GUI)

Requires a complicated build process
Difficult to understand where “magic” code comes from

Our own implementation of Classes/polymorphism and
templates mainly for containers

Python based CLI and administration

\,VEI(A,iO D for primary storage




The Weka.lO framework

Userspace processes

100% CPU, polling based on networking and storage
Asynchronous programming model, using Fibers and a Reactor
Memory efficient, zero-copy everything, very low latency

GC free, lock-free efficient data structures

RPC framework (with no IDL)

\,VEI(A,iO D for primary storage




Infrastructure




Traces

Problem:

Resiliency is very high, reproducing errors is too expensive, all bugs must be
fixed!

vou cannot ‘gdb’ a single fiber in a distributed system, as you’'re going to
change the interactions (stop other fibers, change timings)

You cannot print text (formatted or not)
Too slow
Output will fill local drives very quickly

Very inefficient to filter/search

\,VEI(A,iO D for primary storage




Traces: Requirements

Seamless logging of function entry and exit, incl. arguments, out params
@notrace a function if you DON’T want it to be traced

Efficient logging

INFO!"autorecovery is %s'"(localState.autoRecovery);
Synchronizes several threads to single log

Very efficient binary representation
Very efficient runtime “blitting” of data

Very efficient filtering/searching based on data, text is only generated

screenful at a time

\,VEI(A,iO D for primary storage




6750 / 6059357

@ liranz-3w

1 00023 --> weka.bucket.service.takeOver(bucketld = BucketId<1l7>, failedNodeld = Nodeld<65535>)

1 00023 LOG INFO Attempting taking over Bucketld<l1l7>

1 00023 --> weka. journal. journal.Journal.takeOver(this = 0x00007FDEEGOEF800, startSynchronization = false)

1 00023 --> weka. journal. journal.Journal.isLeaseValid(this = 0x00007FDEEGOEF800)

1 00023 <-- weka. journal.journal.Journal.isLeaseValid(return = false)

1 00023 LOG INFO JOURNAL: Nodeld<6l> taking over Bucketld<l7> from NodeId<65535>

1 00023 <-- weka.journal.journal.Journal.takeOver(return = true, info = TakeOverInfo(firstOpld = BEOpId<18446744073709551615>, lastOpld = BEOpld<18446744073709551615>,
1 00023 LOG DEBUG local take over info BucketId<17>: TakeOverInfo(firstOpld = BEOpId<18446744073709551615>, lastOpId = BEOpId<18446744073709551615>, previousJournalOwne
1 00023 LOG DEBUG #RPC client invokes weka.journal.service_interface.IJournalService.takeOver, cookie=RPCCookie<144182258285150629> dest=NodeId<81>

1 00023 LOG DEBUG #RPC client invokes weka.journal.service_interface.IJournalService.takeOver, cookie=RPCCook1e<144182258285150630> dest=Nodeld<21>

1 01485 LOG DEBUG #RPC server invokes isReady cookie=RPCCooki1e<216261842555634055> from Nodeld<81>#6679

1 01485 --> weka.bucket.service.BucketService.isReady(this = 0x0000000003B29640)

1 01485 <-- weka.bucket.service.BucketService.isReady(return = false)

1 00023 LOG DEBUG took over journal of BucketId<l7> on Nodeld<81>. info: TakeOverInfo(firstOpld = BEOpId<18446744073709551615>, lastOpId = BEOpId<18446744073709551615>,
1 00029 LOG DEBUG Node Nodeld<41l> isn't ready yet

1 01486 LOG DEBUG #RPC server invokes isReady cookie=RPCCookie<216195871857967536> from Nodeld<21>#48032

1 01486 --> weka.bucket.service.BucketService.isReady(this = 0x0000000003B29640)

1 01486 <-- weka.bucket.service.BucketService.isReady(return = false)

1 00029 LOG DEBUG Node Nodeld<21> isn't ready yet

1 00029 LOG DEBUG Node Nodeld<l> isn't ready yet

1 00029 LOG DEBUG Nodes not alive yet. waited for 5 nodes

1 00029 LOG DEBUG numAlive=0, status=NON_AVAILABLE

1 00029 LOG DEBUG #RPC client invokes weka.bucket.service_interface.IBucketService.isReady, cookie=RPCCookie<216239852323078567> dest=Nodeld<81>

1 00029 LOG DEBUG #RPC client invokes weka.bucket.service_interface.IBucketService.isReady, cookie=RPCCookie<216239852323078568> dest=Nodeld<61>

1 00029 LOG DEBUG #RPC client invokes weka.bucket.service_interface.IBucketService.isReady, cookie=RPCCookie<216239852323078569> dest=Nodeld<41>

1 00029 LOG DEBUG #RPC client invokes weka.bucket.service_interface.IBucketService.isReady, cookie=RPCCookie<216239852323078570> dest=Nodeld<l>

1 00029 LOG DEBUG #RPC client invokes weka.bucket.service_interface.IBucketService.isReady, cookie=RPCCookie<216239852323078571> dest=Nodeld<21>

1 01488 LOG DEBUG #RPC server invokes isReady cookie=RPCCookie<216239852323078568> from Nodeld<61>#6734

1 01488 --> weka.bucket.service.BucketService.isReady(this = 0x0000000003B29640)

1 01488 <-- weka.bucket.service.BucketService.isReady(return = false)

1 00029 LOG DEBUG Node Nodeld<6l> isn't ready yet

1 00029 LOG DEBUG Node Nodeld<81> isn't ready yet

1 01489 LOG DEBUG #RPC server invokes isReady cookie=RPCCookie<216217862090523689> from Nodeld<41>#43658

1 01489 --> weka.bucket.service.BucketService.isReady(this = 0x0000000003B29640)

1 01489 <-- weka.bucket.service.BucketService.isReady(return = false)

1 00023 LOG DEBUG took over journal of Bucketld<l7> on Nodeld<21l>. info: TakeOverInfo(firstOpld = BEOpId<18446744073709551615>, lastOpIld = BEOpIld<18446744073709551615>,
1 00023 LOG INFO Take over of Bucketld<l7> completed successfully - TakeOverInfo(firstOpld = BEOpld<18446744073709551615>, lastOpld = BEOpIld<18446744073709551615>, prev
ol 00023 --> weka.events.impl.logEvent!(BucketTakeOver).logEvent(event = BucketTakeOver(bucketId = BucketId<17>, newNodeld = Nodeld<6l>, prevNodeld = NodeId<65535>))

ol 00023 --> weka.events.shm.EventsShmStruct.writeEvent! (BucketTakeOver).writeEvent(this = Ox00007FDEE81F8000, event = BucketTakeOver(bucketId = BucketId<l7>, newNode

bl 00023 --> weka.events.shm.EventsShmStruct.modIndex(this = 0x00007FDEES81F8000, 1dx = 10)




Steps in getting it to work

Instrumenting the code to make sure we can tweak functions and

classes/structs/enums/etc...

CTFE/static code generates “blitting” code

An updater process gives each function/log unique id

Lockless runtime code efficiently dumps data to shared memory
Runtime daemon dumps that memory to files

Interactive reader lets engineers navigate runtime history (or present)

\,VEI(A,iO D for primary storage




RPC — No IDL

No IDL :)
Only define 1nterface for that RPC domain

Then implement serverin a STruct, and get automatically

generated sync/async callers

Allows changing signature semantics (out —> ref, etc)

Very easy to use

Can asynchronously RPC many remote nodes “MultiCall”

\,VEI(A,iO D for primary storage



switch (funcId) {
foreach(i, name; METHODS) {
enum FUNCID = FIRST USER RPC_FUNCID + METHOD IDSI[i];

static assert(__traits(getOverloads, INTERFACE, name).length == 1,

"Overloads not supported in RPC interfaces: " ~ name);
alias Decl = FunctionTypeOf!(__traits(getMember, INTERFACE, name));
static assert (__traits(hasMember, T, name),

T.stringof ~ " is missing " ~ name ~ " of type " ~ Decl.stringof);
static assert(__traits(getOverloads, T, name).length == 1,
"Overloads not supported in RPC implementations: " ~ name);

alias Impl = FunctionTypeOf!(__traits(getMember, T, name));
static assert (is(ReturnType!Impl == ReturnType!Decl) &&
is(ParameterTypeTuple!Impl == ParameterTypeTuple!Decl),
T.stringof ~ "." ~ name ~ " does not implement " ~
INTERFACE.stringof ~ "." ~ name ~ ". Expected " ~

n>

Decl.stringof ~ ", found " ~ Impl.stringof ~ "");

enum Storagesl
enum Storages?2

ParameterStorageClassTuple!Impl;
ParameterStorageClassTuple!Decl;

foreach(j, s; Storagesl) {
static assert (s == Storages2[j], T.stringof ~ "." ~ name ~ " parameter " ~ text(j) ~
" is " ~ (cast(ParameterStorageClass)s).stringof ~ ", expected " ~ (cast(ParameterStorageClass)Storages2[j]).to!string);

case FUNCID:
return invokeServerFunc! (FUNCID, name)(impl, preamble, request, reader, response, replay);

¥
default:

ERROR! ("#RPC server " ~ T.stringof ~ " got invalid function id: %d") (funcld);

dumpError(preamble, response, RPCFuncRet.PROTOCOL_ERROR, "Invalid function " ~ text(funcld));
return true,;

WEKA.IO D for primary storage




Fiber related

Fiber local storage defined anywhere in the code:
alias currentEosId = FiberLocal! (EosId, “currentEosId")

Throw in fiber

Extract backtrace from fibers

\,VEI(A,iO D for primary storage




No-GC efficient data structures

One-to-many lockless queue

Lists, linked lists, queues

Static bit arrays

Cyclic buffer, cyclic queue

Set, different Hash (dict) implementations
Fixed arrays

Resource pools

Typedldentifier (Can be moved to Typedef)

format — NoGC formatting, compile time parsing of fmt str

\,VEI(A,iO D for primary storage




Other goodies

JSONRPC
Http Server + Client without curl (also without SSL)

readline implementation for out cli
assers - assertkq, assertOp
gc hacks - accessing GC data (Why isn’t exported?!?)

TimePoint, TimeOut could extend std.datetime
reflection — overcome private/public restriction for generic reflection in standard

code

accessors that automatically and transitively wrap members and notify of changes

\,VEI(A,iO D for primary storage



Challenges




Garbage Collection

Always running, low latency applications cannot rely on GC

If you cannot stop for more than 1msec, the amount of memory you
can scan is limited

The standard library assumes GC is used, so it cannot be used

Associative arrays, dynamic arrays, map and f1lter cannot be used
since delegates forces GC

The runtime state of the GC is private, makes it very difficult to debug
and optimize

\,VEI(A,iO D for primary storage




Compilation issues

Compiling the project “at once” does not scale:

Takes a long time

Takes a lot of memory (DMD almost 30GB, GDC even more)
Does not leverage modern multi-core CPUs

This is still a smallish project. What happens in few years when we

have a large team?

This way we cannot leverage (cache) previous compilations to make

sure new compilations are quicker

\,VEI(A,iO D for primary storage




Compile by object issues

Expected signature differs from generated

@property @nogc @trusted weka.reactor.reactor.TimedCallback* weka.lib.pools.newpool.Pool!(weka.reactor.reactor.TimedCallback, uint, 1u, false).Pool.Ptr.value()

@property Tx value() @trusted {
if (_index == INVALID) {
return null;
}
if (_index == uint.max -3) {
// This 1is just to prove that this function cannot be nothrow and also @nogc
throw new Exception(format("This is impossible %s", "bla"));

}

version(poolGuards) {

assert(_elements[_index].magicl == MAGIC1, format('"%s: Magicl is corrupt", & elements[_index]));
assert(_elements[_index].magic2 == MAGIC2, format('%s: Magic2 is corrupt", & elements[_index]));
b
version(generationTracker) assert (_generation == _elements[_index].generation,

format("%s: stale generation (%s), should be %s", & elements[_index],
_generation, _elements[_index].generation));

return & _elements[_index].value;

}

\,VEI(A,iO D for primary storage




Compile by object — cont

Current import system is not compatible
Transitive closure of all imports is usually a very large group
Means that almost any change forces way too many compilations
Compilation process is way too long since too much is compiled
Possible solution:

identify imports that are relevant for the public part of that module.

<external>?? 1mport some_module;
When compiling a single object, treat imported modules as they

were only the header with the external imported modules used only

\,VEI(A,iO D for primary storage




Compile by object — cont

Executable size when monolithic compiled: 124MB
Executable size when compiled by object: 1.4GB
Some modules end up taking 10s of MBs, summed to over 6GB

Even with -allinst some templates are not generated automatically

\,VEI(A,iO D for primary storage




Optimizing compilers

GDC still has issues running our code (fibers related and other stuff)

Could not get LDC to compile our code (keeps segfaulting in the

compilation process)
Inlining C library functions does not work

We ended up with no optimizing compiler

\,VEI(A,iO D for primary storage




Ordering issues

static this won’tload the process because of cycles, many

times are not relevant

When the project grows large enough it’s difficult to make sure

there are no import loops

Basically renders the feature not usable

\,VEI(A,iO D for primary storage




Primitive integer types clunkiness

cast(ushort) (80 + someUShort)
cast(ushort) (someUShort % (2~ 16 -1))
cast(ushort) (someUShort / 10)
foreach(x; @ .. 10000) cast(ushort)x;
someUShort << 3; 10k —> 80k, also >>3
cast(ushort) (someUShort | someUShort)
cast(ushort) (someUShort & someUShort)
~someUShort — what 1s the type?

\,VEI(A,iO D for primary storage




Recoup

5 Developing in D for over a year — single language for control and
data path!

5 Getting a huge productivity boost
5 Extensive usage of generic programming, CTFE and other features

é Invested a lot in infrastructure, starting to reap the fruits

(S Large scale real time projects could be better supported

\,VEI(A,iO D for primary storage




Helping each other

We have a lot of library/utility functions we can donate

We have a lot of code “hacks” we do to get things to work

Looking for strong D contractors to be a bridge to the D community

liran@weka.io

\,VEI(A,iO D for primary storage



mailto:liran@weka.io

Peta

EXa
/etta

Yotta
Xenna

WEIKA IO




