
© 2016– Andrei Alexandrescu. Do not redistribute. 1 / 33

Opening Keynote
Prepared for DConf 2016

Andrei Alexandrescu, Ph.D.

2016-05-04



© 2016– Andrei Alexandrescu. Do not redistribute. 2 / 33

Welcome to DConf

2016!



Sup

© 2016– Andrei Alexandrescu. Do not redistribute. 3 / 33





First Five Minutes

© 2016– Andrei Alexandrescu. Do not redistribute. 5 / 33

• First five minutes become the next five years

• Out of the box experience

◦ Website

◦ Tutorials
◦ Documentation

◦ Libraries
• (Self-)Curating dub



Scaling Up

© 2016– Andrei Alexandrescu. Do not redistribute. 6 / 33

• Many thanks for a great year!

◦ Thanks for being here!

◦ The Foundation is up!

• Roles: build czar, sysadmin, webmaster, social

media, conference organizer. . .

• Enhance the “point of contact” approach

• Please get me fired!

• I’m in charge of too many things



Raising the Bar on Contributions

© 2016– Andrei Alexandrescu. Do not redistribute. 7 / 33

• The weird thing about “okay work”

• Reasons to NOT pull something:

◦ “Porque no?”

◦ Respected contributor

◦ “That’s a lot of work”

◦ One-liners and many-liners

◦ Renames

◦ Refactorings showing no clear

improvement

• Churn, illusion of progress



Raising the Bar on Contributions

© 2016– Andrei Alexandrescu. Do not redistribute. 8 / 33

• Reasons to pull something:

◦ Adds value
◦ Refactors for a net benefit

◦ Fixes a bug “positively”

◦ Makes code simpler

◦ Makes code faster

◦ Automates

◦ Improves documentation

• talent × time = win



Resource Management

© 2016– Andrei Alexandrescu. Do not redistribute. 9 / 33



Take the Garbage Out

© 2016– Andrei Alexandrescu. Do not redistribute. 10 / 33

Commit to making D

great with and without

a GC



Issues with RC

© 2016– Andrei Alexandrescu. Do not redistribute. 11 / 33

• Overall: RC a qualified success story in

computing

• Make it work with immutable

• Make it safe

• Make it work with classes and value types

• Make it work lazily (COW)

◦ Copies should not have arbitrary cost



Basics

© 2016– Andrei Alexandrescu. Do not redistribute. 12 / 33

• The C++ way: library smart pointers

+ Apply to any type

− Apply to any type (unsafe)

− Needs mutable

• Envisioned:
◦ In-language support + library hooks

◦ Attribute @rc
◦ opIncRef(uint), opDecRef(uint)



Safety

© 2016– Andrei Alexandrescu. Do not redistribute. 13 / 33

• Main issue: unaccounted refs

struct RC { int a; ... }

void fun(ref RC obj, ref int x) {

obj = RC();

... use x ...

}

void gun() {

RC obj = ...;

fun(obj, obj.f);

}

• Variant: obj is global

• Attack: Insert extra incs/decs for ref params

• Fuse successive incs/decs where possible

• Elide increments where possible



immutable

© 2016– Andrei Alexandrescu. Do not redistribute. 14 / 33

• Apparent contradiction!
◦ immutable: “I’ll never change, honey”
◦ RC: surreptitious change in metadata

• We considered revoking immutable rights for

RC objects

• If only we had a means to:

◦ allocate metadata along with each object

◦ type metadata independently

◦ access metadata in O(1). . .



© 2016– Andrei Alexandrescu. Do not redistribute. 15 / 33

“Why do you completely discard

external reference counting

approach (i.e. storing refcount in

GC/allocator internal data

structures bound to allocated

memory blocks)?”

– Dicebot



© 2016– Andrei Alexandrescu. Do not redistribute. 16 / 33

“Never ascribe to malice that

which is adequately explained by

incompetence.”

– Robert J. Hanlon



AffixAllocator!. . . AffixAllocator!. . .

© 2016– Andrei Alexandrescu. Do not redistribute. 17 / 33

• Part of std.experimental.allocator from

day one

• AffixAllocator!(GCAllocator, uint):

◦ fronts each allocation with an extra uint

◦ . . . that’s independently typed
◦ Accessible in O(1)!

• Use this allocator for creating RC objects



import bigo;

© 2016– Andrei Alexandrescu. Do not redistribute. 18 / 33



“Big O” Notation

© 2016– Andrei Alexandrescu. Do not redistribute. 19 / 33

• Compact characterization of algorithms

• Growing importance in recent years

• Usually confined to documentation

• Pen and paper suffices for non-generic code

• Better: make it generic and a discoverable

part of the API



Scaling Naming Conventions

© 2016– Andrei Alexandrescu. Do not redistribute. 20 / 33

• Nomenclature approaches don’t scale

• removeLinTime, removeLogTime,
removeConstTime

• Hierarchy of speeds: faster functions
subsume slower ones

• Sometimes O(·) depends on 2+ parameters

• Helpless with HOFs

• Doesn’t scale to large APIs

• We want to automate this



Related Work

© 2016– Andrei Alexandrescu. Do not redistribute. 21 / 33

• Java: initially complexity-oblivious APIs

◦ Later: RandomAccess “marker” interface

• STL carefully specifies complexity

◦ Archetypal examples: push_front,

push_back, operator[]

◦ Syntax complexity follows algo complexity

◦ Undecided on “best effort” vs. “present or

not”, e.g. distance



Loosely Related Work

© 2016– Andrei Alexandrescu. Do not redistribute. 22 / 33

• O(·) analysis part of typechecking (Marion

2011)

• Automated Higher-Order Complexity Analysis

(Benzinger 2004)

• Monotonic State (Pilkiewicz et al 2011)



Here

© 2016– Andrei Alexandrescu. Do not redistribute. 23 / 33

• User:
◦ Introduces annotations
◦ Defines composition

• Framework:

◦ Provides algebra
◦ Propagates attributes
◦ Calculates composition

• Notably for higher-order functions

◦ Makes result available by static

introspection



Synopsis

© 2016– Andrei Alexandrescu. Do not redistribute. 24 / 33

// Generic doubly-linked list of E

struct DoublyLinkedList(E) {

...

// Complexity is O(1)

void insertFront(E x) @O(1);

}

// Generic contiguous array of E

struct Array(E) {

...

// Complexity is O(n) in the first argument (this)

void insertFront(E x) @O("n");

}



Synopsis

© 2016– Andrei Alexandrescu. Do not redistribute. 25 / 33

// Complexity of insertFrontMany is the complexity of

// C.insertFront multiplied by the size of the second

// argument.

void insertFrontMany(C, E)(ref C container, E[] items)

@(complexity!(C.insertFront) * O("n2")) {

foreach (item; items) {

c.insertFront(item);

}

}



Introspection

© 2016– Andrei Alexandrescu. Do not redistribute. 26 / 33

static assert(

complexity!(insertFrontMany!MyC) <=

O("n2") * log(O("n1")),

"Too high complexity for insertFrontMany.");



Conventions

© 2016– Andrei Alexandrescu. Do not redistribute. 27 / 33

• Unannotated functions are considered O(1)

• "nk" for the kth parameter

• this is the first parameter

• "n" if only one parameter of interest



Algebra

© 2016– Andrei Alexandrescu. Do not redistribute. 28 / 33

• Credit: Timon Gehr

C , O

(

∑

i

∏

j

v
pij
ij loglij vij

)

• pij, lij positive, pij + lij > 0
• log n, n, n log n,

√
n1 + n2 log n2, n2 log n1 . . .



Normal Form & Partial Order

© 2016– Andrei Alexandrescu. Do not redistribute. 29 / 33

• Normal form for terms: most compact form

• A ≤ A′ immediate (compare vars and powers)

• T ≤ T ′ iff for each atom A in T there’s an

atom A′ in T ′ with A ≤ A′

• C ≤ C ′ iff for each term T in C there’s a term

T ′ in C ′ with T ≤ T ′

• Normal form for complexities: no terms are

ordered by ≤



Operations on Complexities

© 2016– Andrei Alexandrescu. Do not redistribute. 30 / 33

• Comparison for equality and ≤
• Addition (add, then normalize)

• Multiplication (multiply, then normalize)

• Normalization keeps only the fastest-growing

terms: O (n+
√
m+m log n) +O

(

m2 + log n
)

is O
(

n+m2 +m log n
)

• log just a bit trickier (can’t express

log(n1 + n2))



log for Complexities

© 2016– Andrei Alexandrescu. Do not redistribute. 31 / 33

• Rely on a simple approximation

log

(

∑

i

∏

j

v
pij
ij loglij vij

)

,
∑

i

∑

j,pij>0

log vij (1)

• log log very slow growing, ignore

• log(a+ b) ≤ log(ab)



Implementation

© 2016– Andrei Alexandrescu. Do not redistribute. 32 / 33

• Operator overloading (==, <=, +, *)

• Pivotal use of compile-time evaluation

◦ Perfect match with attribute expressions

• Run-time computation automatically available

• Sweet spot between convenience and

complexity (sic)

• Coming soon!



© 2016– Andrei Alexandrescu. Do not redistribute. 33 / 33

One Last Thing


	
	Sup
	
	First Five Minutes
	Scaling Up
	Raising the Bar on Contributions
	Raising the Bar on Contributions

	Resource Management
	Take the Garbage Out
	Issues with RC
	Basics
	Safety
	`11`=12lstlanguage=Dimmutable
	
	
	`11`=12lstlanguage=DAffixAllocator!… `11`=12lstlanguage=DAffixAllocator!…

	`11`=12lstlanguage=Dimport`11`=12lstlanguage=Dbigo;
	``Big O'' Notation
	Scaling Naming Conventions
	Related Work
	Loosely Related Work
	Here
	Synopsis
	Synopsis
	Introspection
	Conventions
	Algebra
	Normal Form & Partial Order
	Operations on Complexities
	log for Complexities
	Implementation
	


