

Tour of the DMD D Programming
Language Compiler

by Walter Bright

http://www.walterbright.com

Organization

● One front end to rule them all
– and in the D bind them

– written in D

● Three back ends
– Digital Mars (dmd)

– Gnu compiler collection (gdc)

– LLVM (ldc)

Major Changes in Last Year

● Converted front end from C++ to D
● Switch to using Dwarf exception handling

– opens up more comprehensive C++ interfacing

Source Code

https://github.com/dlang/dmd

Directories

● src/ front end source code
● src/tk generic code for back end
● src/root generic code for front end
● src/backend optimizer and code generator
● src/vcbuild for building compiler with VS

Types of Compiles

● diagnose errors in source code
● generate a debug build
● generate a release build

Memory Allocation

● root/rmem.d

● Allocate, but never free
● Very fast
● No need for ownership tracking
● Puts upper limit on size of compile

Strings

● root/stringtable.d

● const(char)*

● identifier strings stored in single hash table
● address of string becomes its hash

– Identifier.idPool()

● very fast

Array(T)

● root/array.d
● a workalike to D dynamic arrays
● accessible from C++ code
● heavily used

alias Strings = Array!(const(char)*);
alias Statements = Array!Statement;
alias Identifiers = Array!Identifier;
… etc.

RootObject

● root/object.d

● single rooted hierarchy
– much like D's Object, but predates it

– a C++ class, so accessible from glue layer

– Declarations, Statements, Expressions

– heavy use of OOP plus Visitor Pattern

Passes

● read files
● lex
● parse
● create symbol table
● semantic 1
● semantic 2

● semantic 3
● inline
● glue
● optimize
● generate code
● write to object file

Lexing

● lexer.d

● pretty simple
● rarely changes
● mostly concerned with speed

Parsing

● parse.d
● also simple and rarely changes
● lookahead is done by forming a stack of tokens
● code looks a lot like the grammar …

case TOKwhile:
 {
 nextToken();
 check(TOKlparen);
 Expression condition = parseExpression();
 check(TOKrparen);
 Loc endloc;
 Statement _body =
 parseStatement(PSscope, null, &endloc);
 s = new
 WhileStatement(loc,condition,_body,endloc);
 break;
 }

Create Symbol Table

● importAll()

● establishes a Scope for each symbol

Scope

● dscope.d

● link to enclosing Scope
● fields

– module

– function

– storage class in effect

– ...

Semantic

int a;
int b = 3;
int foo() {
 return 6;
}

Lowering

● rewriting ASTs to simpler, canonical forms
● reduces number of cases needing to be dealt

with later
● reduces complexity and bugs
● even makes it easier to document

Loops

while (cond) { body }

for (; cond;) { body }

foreach (i; n .. m) { body }

for (auto i = n; i < m; ++i) { body }

foreach (e; aggr) { body }

for (auto r = aggr[]; !r.empty; r.popFront())
{
 auto e = r.front;
 body;
}

Exceptions

● rewritten to be try-finally
● scope
● synchronized
● RAII

Error Recovery Models

● Quit on first error
● Guess at user intention, then repair
● Poisoning

Poisoning

● have a special 'error' AST node
● replace erroneous AST node with 'error' node
● replace any node that has an 'error' child with

an 'error' node
● virtually eliminates cascaded errors

– errors displayed are real errors

Spell Checking

● root/speller.d

● for undefined identifiers

Constant Folding

● constfold.d

UnionExp Bool(Type type, Expression e1) {
 UnionExp ue;
 Loc loc = e1.loc;
 emplaceExp!(IntegerExp)(&ue, loc, e1.isBool(true)?1:0, type);
 return ue;
}

Compile Time Function Execution
(CTFE)

● just a glorified constant folder
● allocates memory to evaluate an expression
● so it runs out of memory
● and is slow

Templates

● Stored as ASTs as produced by the parser
● To instantiate:

– copy the AST

– set the scope to where the template declaration is
in the symbol table

– create symbols from template arguments

– run semantic() passes

Inlining

● inline.d
● functions that can be represented as an

expression can be inlined

int func(int x) { if (x == 8) return 9; else return 68; }

y = func(z) + 8;

y = ((int x = z),(x == 8 ? 9 : 68)) + 8;

● but that doesn't work with loops

Inlining Statements

x = 3;
func(x);
y = x + 3;

Challenges

● eliminate global variables
– sooner or later always cause trouble with recursive logic like

compiler guts

● get a grip on complexity
– reduce cyclomatic complexity

– code should flow rather than hop around

– change data structures to eliminate special cases

● reduce memory consumption
– localize (i.e. encapsulate) memory management

More Challenges

● improve encapsulation
– containers leak implementation details like being a

linked list or an array

– encapsulation means data structures can be changed

● use const / pure / nothrow / @safe
● better dogfooding

– too many vestiges of the older C++ implementation
hanging around

Conclusion

● I like working on compilers
● It never stops being fun (much more fun than

playing video games!)
● Always learning new ways to make the code

better
● All welcome to fork on Github and join in the

fray!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

