Tour of the DMD D Programming
Language Compiler

by Walter Bright

http://www.walterbright.com






Organization

* One front end to rule them all
- and in the D bind them
- written in D

* Three back ends
- Digital Mars (dmd)
— Gnu compiler collection (gdc)
- LLVM (ldc)



Major Changes In Last Year

e Converted front end from C++to D
» Switch to using Dwarf exception handling

— opens up more comprehensive C++ interfacing



Source Code

https://github.com/dlang/dmd
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Directories

src/ front end source code
src/tk generic code for back end

src/root generic code for front end
src/backend optimizer and code generator
src/vcbuild for building compiler with VS



Types of Complles

» diagnose errors in source code
e generate a debug builc

e generate a release build



Memory Allocation

e root/rmem.d

» Allocate, but never free

* Very fast

* No need for ownership tracking

« Puts upper limit on size of compile



Strings

root/stringtable.d

const (char) *
identifier strings stored in single hash table

address of string becomes its hash
— Tdentifier.1dPool ()

very fast



Array (T)

root/array.d
a workalike to D dynamic arrays

accessible from C++ code

heavily used
allas Strings = Array! (const (char) *);
allas Statements = Array!Statement;
alias Identifiers = Array!Identifier;

. etc.



RootObject

e root/object.d

* single rooted hierarchy

- much like D's Object, but predates it
- a C++ class, so accessible from glue layer
— Declarations, Statements, Expressions

- heavy use of OOP plus Visitor Pattern



Passes

read files e semantic 3
ex e Inline

parse * glue

create symbol table e optimize
semantic 1 * generate code
semantic 2 * Write to object file



Lexing

lexer.d

pretty simple

rarely changes

mostly concerned with speed



Parsing

parse.d

also simple and rarely changes
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nead Is done by forming a stack of tokens

ooks a lot like the grammar ...



case TOKwhile:
{

nextToken () ;

check (TOKlparen) ;

Expression condition = parseExpression () ;

check (TOKrparen) ;

Loc endloc;

Statement _body =
parseStatement (PSscope, null, &endloc);

S = new
WhileStatement (loc, condition, _body,endloc);

break;



Create Symbol Table

e 1mportAll ()
» establishes a Scope for each symbol



SCope

e dscope.d
* link to enclosing Scope
* flelds

- module
- function
- storage class in effect



Semantic

int a;

int b = 3;

int foo () A
return 6;



Lowering

rewriting ASTs to simpler, canonical forms

reduces number of cases needing to be dealt
with later

reduces complexity and bugs
even makes it easier to document



LoopsS

while (cond) { body }

for (; cond; ) { body }

foreach (i; n .. m) { body }

for (auto i = n; i < m; ++i) { body }
foreach (e; aggr) { body }

for (auto r = aggr([]; !r.empty; r.popFront/())

{

auto e = r.front;
body;
s



Exceptions

rewritten to be try-finally
scope

synchronized

RAII



Error Recovery Models

e Quit on first error
» Guess at user Intention, then repair
* Poisoning



Poisoning

have a special 'error' AST node
replace erroneous AST node with 'error' node

replace any node that has an 'error' child with
an 'error' node

virtually eliminates cascaded errors
— errors displayed are real errors



Spell Checking

e root/speller.d
e for undefined identifiers



Constant Folding

e constfold.d

UnionkExp Bool (Type type, Expression el)
UnionExp uej;

Loc loc = el.loc;

emplaceExp! (IntegerkExp) (&ue, loc, el.isBool (true)?1:0, type);
return ue;



Compile Time Function Execution
(CTFE)

* just a glorified constant folder

 allocates memory to evaluate an expression
e SO It runs out of memory

» and is slow



Templates

« Stored as ASTs as produced by the parser

 To Instantiate:

- copy the AST

- set the scope to where the template declaration is
In the symbol table

- create symbols from template arguments
- run semantic() passes



Inlining

e Inline.d

 functions that can be represented as an
expression can be inlined

int func(int x) { 1if (x == 8) return 9; else return 68; }

y = func(z) + §;

y = ((int x = z),(x == 8 2 9 : 68)) + 8§;

* put that doesn't work with loops



Inlining Statements
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Challenges

* eliminate global variables

- sooner or later always cause trouble with recursive logic like
compiler guts

e get a grip on complexity
- reduce cyclomatic complexity

- code should flow rather than hop around
- change data structures to eliminate special cases

* reduce memory consumption

- localize (i.e. encapsulate) memory management



More Challenges

* Improve encapsulation

- containers leak implementation details like being a
linked list or an array

- encapsulation means data structures can be changed

e Use const / pure/ nothrow/ @safe

* better dogfooding

- too many vestiges of the older C++ implementation
hanging around



Conclusion

* | like working on compilers

* |t never stops being fun (much more fun than
playing video games!)

* Always learning new ways to make the code
better

* All welcome to fork on Github and join in the
fray!
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