Tour of the DMD D Programming
Language Compiler

by Walter Bright

http://www.walterbright.com

Organization

* One front end to rule them all
- and in the D bind them
- written in D

* Three back ends
- Digital Mars (dmd)
— Gnu compiler collection (gdc)
- LLVM (ldc)

Major Changes In Last Year

e Converted front end from C++to D
» Switch to using Dwarf exception handling

— opens up more comprehensive C++ interfacing

Source Code

https://github.com/dlang/dmd

€ D-Programminc x §__\) .

€ - G A [B Gitiuo, inc us]] hitps://github.com/D-Programming-Language/dmd Q| =

O This repository ~ Search Pull requests Issues Gist a_h' +~ . v &
[D-Programming-Language / dmd © Unwatch~ 148 S Star 1,215 ¥ Fork 365

<> Code 11 Pull requests 153 4~ Pulse |:l1 Graphs 1 Settings
dmd D Programming Language compiler http://dlang.org — Edit
D 14,512 commits ¥ 11 branches © 99 releases % 123 contributors

|
Branch: master ~ Newfile Uploadfiles Findfile HTTPS~ https://github.com/D-Progi B2 [& Download ZIP
 9rnsr Merge pull request #5654 from WalterBright/test15861 © --- Latest commit 72bfdf6 21 hours ago
i docs/man update Copyright to 2016 18 days ago
il ini VS2015: the linker needs VCibin, Common7\IDE is even harmful because ... 7 months ago
B samples fix Issue 14709 - dmd/samples/listener.d socket.accept exception hand... 8 months ago
il src Merge pull request #5650 from WalterBright/fix15861 a day ago
il test Better test case for 15861 fix a day ago
[E .editorconfig more selective editorconfig 2 years ago
& .gitignore add src/SYSCONFDIR.imp to gitignore 15 days ago
B .travis.ymi update to latest Idc version 6 months ago
& README.md Add link to bug tracker. a year ago
E VERSION Fix wrong version number 2.069 to 2.070 2 months ago
& changelog.dd adapt changelog to modified -transition=import/checkimports 25 days ago
& posix.mak Add html doc build for dmd 3 months ago
[travis.sh workaround missing cc in gdc-4.9.3 test download 3 months ago
E win32.mak add top level make files 10 months ago

Directories

src/ front end source code
src/tk generic code for back end

src/root generic code for front end
src/backend optimizer and code generator
src/vcbuild for building compiler with VS

Types of Complles

» diagnose errors in source code
e generate a debug builc

e generate a release build

Memory Allocation

e root/rmem.d

» Allocate, but never free

* Very fast

* No need for ownership tracking

« Puts upper limit on size of compile

Strings

root/stringtable.d

const (char) *
identifier strings stored in single hash table

address of string becomes its hash
— Tdentifier.1dPool ()

very fast

Array (T)

root/array.d
a workalike to D dynamic arrays

accessible from C++ code

heavily used
allas Strings = Array! (const (char) *);
allas Statements = Array!Statement;
alias Identifiers = Array!Identifier;

. etc.

RootObject

e root/object.d

* single rooted hierarchy

- much like D's Object, but predates it
- a C++ class, so accessible from glue layer
— Declarations, Statements, Expressions

- heavy use of OOP plus Visitor Pattern

Passes

read files e semantic 3
ex e Inline

parse * glue

create symbol table e optimize
semantic 1 * generate code
semantic 2 * Write to object file

Lexing

lexer.d

pretty simple

rarely changes

mostly concerned with speed

Parsing

parse.d

also simple and rarely changes

[o]0)

Ka

COC

e

nead Is done by forming a stack of tokens

ooks a lot like the grammar ...

case TOKwhile:
{

nextToken () ;

check (TOKlparen) ;

Expression condition = parseExpression () ;

check (TOKrparen) ;

Loc endloc;

Statement _body =
parseStatement (PSscope, null, &endloc);

S = new
WhileStatement (loc, condition, _body,endloc);

break;

Create Symbol Table

e 1mportAll ()
» establishes a Scope for each symbol

SCope

e dscope.d
* link to enclosing Scope
* flelds

- module
- function
- storage class in effect

Semantic

int a;

int b = 3;

int foo () A
return 6;

Lowering

rewriting ASTs to simpler, canonical forms

reduces number of cases needing to be dealt
with later

reduces complexity and bugs
even makes it easier to document

LoopsS

while (cond) { body }

for (; cond;) { body }

foreach (i; n .. m) { body }

for (auto i = n; i < m; ++i) { body }
foreach (e; aggr) { body }

for (auto r = aggr([]; !r.empty; r.popFront/())

{

auto e = r.front;
body;
s

Exceptions

rewritten to be try-finally
scope

synchronized

RAII

Error Recovery Models

e Quit on first error
» Guess at user Intention, then repair
* Poisoning

Poisoning

have a special 'error' AST node
replace erroneous AST node with 'error' node

replace any node that has an 'error' child with
an 'error' node

virtually eliminates cascaded errors
— errors displayed are real errors

Spell Checking

e root/speller.d
e for undefined identifiers

Constant Folding

e constfold.d

UnionkExp Bool (Type type, Expression el)
UnionExp uej;

Loc loc = el.loc;

emplaceExp! (IntegerkExp) (&ue, loc, el.isBool (true)?1:0, type);
return ue;

Compile Time Function Execution
(CTFE)

* just a glorified constant folder

 allocates memory to evaluate an expression
e SO It runs out of memory

» and is slow

Templates

« Stored as ASTs as produced by the parser

 To Instantiate:

- copy the AST

- set the scope to where the template declaration is
In the symbol table

- create symbols from template arguments
- run semantic() passes

Inlining

e Inline.d

 functions that can be represented as an
expression can be inlined

int func(int x) { 1if (x == 8) return 9; else return 68; }

y = func(z) + §;

y = ((int x = z),(x == 8 2 9 : 68)) + 8§;

* put that doesn't work with loops

Inlining Statements

X
<
s
@
X~ W
X

Challenges

* eliminate global variables

- sooner or later always cause trouble with recursive logic like
compiler guts

e get a grip on complexity
- reduce cyclomatic complexity

- code should flow rather than hop around
- change data structures to eliminate special cases

* reduce memory consumption

- localize (i.e. encapsulate) memory management

More Challenges

* Improve encapsulation

- containers leak implementation details like being a
linked list or an array

- encapsulation means data structures can be changed

e Use const / pure/ nothrow/ @safe

* better dogfooding

- too many vestiges of the older C++ implementation
hanging around

Conclusion

* | like working on compilers

* |t never stops being fun (much more fun than
playing video games!)

* Always learning new ways to make the code
better

* All welcome to fork on Github and join in the
fray!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

