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Organization

● One front end to rule them all
– and in the D bind them

– written in D

● Three back ends
– Digital Mars (dmd)

– Gnu compiler collection (gdc)

– LLVM (ldc)



  

Major Changes in Last Year

● Converted front end from C++ to D
● Switch to using Dwarf exception handling

– opens up more comprehensive C++ interfacing



  

Source Code

https://github.com/dlang/dmd



  



  

Directories

● src/         front end source code
● src/tk       generic code for back end
● src/root     generic code for front end
● src/backend  optimizer and code generator
● src/vcbuild  for building compiler with VS



  

Types of Compiles

● diagnose errors in source code
● generate a debug build
● generate a release build



  

Memory Allocation

● root/rmem.d

● Allocate, but never free
● Very fast
● No need for ownership tracking
● Puts upper limit on size of compile



  

Strings

● root/stringtable.d

● const(char)*

● identifier strings stored in single hash table
● address of string becomes its hash

– Identifier.idPool()

● very fast



  

Array(T)

● root/array.d
● a workalike to D dynamic arrays
● accessible from C++ code
● heavily used

alias Strings = Array!(const(char)*);
alias Statements = Array!Statement;
alias Identifiers = Array!Identifier;
… etc.



  

RootObject

● root/object.d

● single rooted hierarchy
– much like D's Object, but predates it

– a C++ class, so accessible from glue layer

– Declarations, Statements, Expressions

– heavy use of OOP plus Visitor Pattern



  

Passes

● read files
● lex
● parse
● create symbol table
● semantic 1
● semantic 2

● semantic 3
● inline
● glue
● optimize
● generate code
● write to object file



  

Lexing

● lexer.d

● pretty simple
● rarely changes
● mostly concerned with speed



  

Parsing

● parse.d
● also simple and rarely changes
● lookahead is done by forming a stack of tokens
● code looks a lot like the grammar …



  

case TOKwhile:
 {
   nextToken();
   check(TOKlparen);
   Expression condition = parseExpression();
   check(TOKrparen);
   Loc endloc;
   Statement _body =
       parseStatement(PSscope, null, &endloc);
   s = new
       WhileStatement(loc,condition,_body,endloc);
   break;
 }



  

Create Symbol Table

● importAll()

● establishes a Scope for each symbol



  

Scope

● dscope.d

● link to enclosing Scope
● fields

– module

– function

– storage class in effect

– ...



  

Semantic

int a;
int b = 3;
int foo() {
      return 6;
}



  

Lowering

● rewriting ASTs to simpler, canonical forms
● reduces number of cases needing to be dealt 

with later
● reduces complexity and bugs
● even makes it easier to document



  

Loops

while (cond) { body }

for (; cond; ) { body }

foreach (i; n .. m) { body }

for (auto i = n; i < m; ++i) { body }

foreach (e; aggr) { body }

for (auto r = aggr[]; !r.empty; r.popFront())
{
  auto e = r.front;
  body;
}



  

Exceptions

● rewritten to be try-finally
● scope
● synchronized
● RAII



  

Error Recovery Models

● Quit on first error
● Guess at user intention, then repair
● Poisoning



  

Poisoning

● have a special 'error' AST node
● replace erroneous AST node with 'error' node
● replace any node that has an 'error' child with  

an 'error' node
● virtually eliminates cascaded errors

– errors displayed are real errors



  

Spell Checking

● root/speller.d

● for undefined identifiers



  

Constant Folding

● constfold.d

UnionExp Bool(Type type, Expression e1) {
  UnionExp ue;
  Loc loc = e1.loc;
  emplaceExp!(IntegerExp)(&ue, loc, e1.isBool(true)?1:0, type);
  return ue;
}



  

Compile Time Function Execution 
(CTFE)

● just a glorified constant folder
● allocates memory to evaluate an expression
● so it runs out of memory
● and is slow



  

Templates

● Stored as ASTs as produced by the parser
● To instantiate:

– copy the AST

– set the scope to where the template declaration is 
in the symbol table

– create symbols from template arguments

– run semantic() passes



  

Inlining

● inline.d
● functions that can be represented as an 

expression can be inlined

int func(int x) { if (x == 8) return 9; else return 68; }

y = func(z) + 8;

y = ((int x = z),(x == 8 ? 9 : 68)) + 8;

●  but that doesn't work with loops



  

Inlining Statements

x = 3;
func(x);
y = x + 3;



  

Challenges

● eliminate global variables
– sooner or later always cause trouble with recursive logic like 

compiler guts

● get a grip on complexity
– reduce cyclomatic complexity

– code should flow rather than hop around

– change data structures to eliminate special cases

● reduce memory consumption
– localize (i.e. encapsulate) memory management



  

More Challenges

● improve encapsulation
– containers leak implementation details like being a 

linked list or an array

– encapsulation means data structures can be changed

● use const / pure / nothrow / @safe 
● better dogfooding

– too many vestiges of the older C++ implementation 
hanging around



  

Conclusion

● I like working on compilers
● It never stops being fun (much more fun than 

playing video games!)
● Always learning new ways to make the code 

better
● All welcome to fork on Github and join in the 

fray!
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