Multitasking with D

Ali Cehreli

DConf 2016, May 4 « Berlin, Germany

Definitions

(Parallelism)
CPU and OS internals

Fibers

Concurrency

Asynchronous input and output

Confusing related terms

Multitasking

Concurrency

Parallelism

Multithreading

Fibers (coroutine, green thread, greenlet, light-weight thread, etc.)

etc.

Multitasking

Performing multiple tasks, not sequentially (i.e. concurrently, likely in an
interleaved fashion).

Multitasking is
* not parallelism
o not data parallelism (SIMD)
o not instruction-level parallelism (CPU pipelining)
o not memory-level parallelism (CPU cache, TLB, prefetching, etc.)

* not multithreading (but uses threads)

// An impractical and sub-optimal multitasking example
task 1 step 1();

task 2 step 1();

task 1 step 2();

task 2 step 2();

/] ...

Parallelism

Executing operations simultaneously to make the program run faster.

Especially good for embarrassingly parallel operations.

std.parallelism.parallel

If the following takes 4 seconds
auto images = [Image(l), Image(2), Image(3), Image(4) 1;

foreach (image; images) {
// ... lengthy operations ...
}

The following takes 1 second on 4 cores

import std.parallelism;

foreach (image; images.parallel) {
// ... lengthy operations ...
}

std.parallelism module

parallel: Operates on a range in parallel; good with foreach with
lengthy operations

asyncBuf: Iterates a range semi-eagerly in parallel; good with range
algorithms with lengthy iterations

map: Operates on a range semi-eagerly in parallel
amap: Operates on a range eagerly in parallel
reduce: Does calculations on a range eagerly in parallel

task: Creates tasks to be executed in parallel (blurs the parallelism-
concurrency boundary)

Operating system and CPU internals

Call stack

CPU reqisters IP and SP
Thread

CPU caches

MMU and TLB

Call stack

Stack frame: Local state of a function call

Call stack: Stack frames of all currently active function calls (aka stack)

void main() { The call stack grows as
int a; function calls get deeper.
int b;
A A
int ¢ = foo(a, b); |
}
int foo(int x, int y) { int param « bar's frame
bar(x + yS' string[] arr
return 42; int x
} int vy ~ foo's frame

return value
void bar(int param) {
string[] arr; int a
// ... int b « main's frame
} int ¢

Call stack is especially useful in recursion

The call stack takes care of execution state automatically.

import std.array;
arr == [] « final call
int sum(int[] arr, int currentSum = 0) { currentSum == 6
if (arr.empty) {
return currentSum; arr == [3] « third call
} currentSum == 3
return sum(arr[l..$], arr == [2, 3] ~ second call
currentSum + arr.front); currentSum == 1
}
visel mEdm) arr == [1, 2, 3] « first call
assert(sum([1l, 2, 3]) == 0); currentsum == @
; « main's frame
Note: Use std.algorithm.sum instead. Note: "Tail-call optimization" can eliminate

stack frames.

10

CPU registers

Ultimately, everything happens on CPU registers.

Instruction pointer (IP) what to execute next (aka program counter (PC))

Stack pointer (SP) the local context

. more (usually dozens) ...

Plug: Even the Mill, a revolutionary CPU with no conventional general-
purpose registers, have equivalents of IP and SP: http://millcomputing.com/

11

http://millcomputing.com/

Thread

An execution context:
* |IP register determines the execution

* SP register determines the context (other pieces are involved as well)

A simplification of a thread for the rest of this presentation:

IP
SP

12

Two threads

Two processes to be executed concurrently:

// A

import std.stdio;

void main() {

writeln("Hello, world.");

}

// B

import std.stdio;

void main() {

writeln("Hello, Mars.");

}

The OS loads each process into memory and allocates a stack for each:

Memory:

A's main
thread

compiled A

IP
SP

A's stack

compiled B

IP
SP

B's stack

B's main
thread

13

Three threads

Two processes, three threads:

// A // B
import std.stdio; import std.stdio;
import std.concurrency;
void main() {
void greetMoon() { writeln("Hello, Mars.");
writeln("Hello, moon."); }
}

void main() {
spawn (&greetMoon) ;
writeln("Hello, world.");

A's main IP IP B's main
thread SP SP thread

A's greetMoon IP
thread SP

OS concurrency

Potentially thousands of threads on e.qg. 4 cores:

The OS uses special thread scheduling algorithms relying on

IP
SP

* Process priority

Thread priority
|O-bound versus CPU-bound

Time-slice fully used last time or not (Linux)

Process foreground versus background (Windows)

etc.

A's A's B's
main greetMoon main
IP IP IP IP IP IP IP IP
SP SP SP SP SP SP SP SP
v v v (idle)
cl c2 c3 c4

15

OS thread scheduler

The goal: No core should be idle if there are runnable threads.
(A number of performance issues with the Linux scheduler has recently been

reported. (See "The Linux Scheduler: a Decade of Wasted Cores" by Lozi and
others.))

Each thread is placed on a core and given a slice of time to run:

Time slice:

the thread
starts running

A

e Either it uses the entire time slice before being preempted
* Or stops early because it is

o waiting for 10

o waiting for a synchronization primitive

o paused intentionally

16

Partially unused time slice

Time slice:

A A

the thread the thread
starts running stops running

the rest 1is
used by other
thread(s)

Performance issue: Actual execution time is abandoned.

17

CPU and its caches

An imaginary 4-core CPU with 3 levels of hierarchical cache.

CPU

cl c2

c3 . . c4

cl, c2, c3, c4: Cores

Level 1 cache, ~1 clock cycle
B Level 2 cache, ~20 clock cycles
B Level 3 cache, ~80 clock cycles
B Physical memory, ~200 clock cycles

Virtual memory

Every process (program) sees memory as a contiguous storage space (e.g.

all of the 64-bit space of a 64-bit CPU):

0x0000 0000 0000 0000 - OXxFFFF_FFFF_FFFF_FFFF

Virtual Physical

Process Variable address address
A X 0x1000 0x1234

B y 0x1000 0x5678

This requires a translation at runtime
» from virtual addresses

* to physical addresses

19

Memory management unit (MMU)
» Accesses memory for the CPU
* Does virtual-to-physical address translation

Virtual-to-physical translation table is too large to be on-chip; may even be
swapped to disk. What is on-chip is the TLB.

CPU

cl c2

MMU

c3 . . c4

I Translation lookaside buffer (TLB), ~1 clock cycle hit,
~100 clock cycles miss

20

Context switch

Placing another thread on a core (i.e. replacing IP and SP with a different
thread's)

Reasons:

Thread consumed the entire time slice (good!)

Waiting for input or outpt (10)

Waiting for exclusive access to a piece of critical code section (e.q.
locking a mutex)

Paused intentionally

Potential performance issues:

* Part of execution time-slice may be unused

e CPU's instruction and data caches may be flushed
e TLB may be flushed

21

22

Same fringe problem

"Two binary trees have the same fringe if they have exactly the same leaves
reading from left to right." Richard P. Gabriel at http://www.dreamsongs.com/10ideas.htm|

"Write a samefringe program that does not consume a lot of storage."

With apologies, changing the problem to same elements in in-order
traversal:

Tree A Tree B
2 4
/ \ / \
1 4 2 5
/ \ / \

3 5 1 3

23

http://www.dreamsongs.com/10ideas.html

Recursive tree traversal

Thanks to call stack, traversing a binary tree is easy and elegant:

volid traverse(const(Node) * node, Func func) {
if (!node) {
return;
}

traverse(node. left, func);
func(node.element);
traverse(node.right, func);

What if there are two trees?

24

Surprising complexity

Implementing a range (or iterator) type for a tree is very hard especially
considering how trivial it is with recursion.

struct Tree {
// ...

struct InOrderRange {
. What should the implementation be? ...
}

InOrderRange opSlice() const {
return InOrderRange(root);
}

}

Some tree iterator implementations require an additional Node* to point at
the parent node.

25

Cooperative multitasking

Context switch performed by an OS thread

Time slice:

main thread
starts
running

|
fiber
starts

running

A
|

main
thread

A

fiber

A

main
thread

26

Fiber operations

A fiber (and its call stack) starts with a callable entity taking no
parameter, returning nothing:

void fiberFunc() { /* ... */ }

Can be created as an object of the core.thread.Fiber class hierarchy:

auto fiber = new Fiber(&fiberFunc);

Started and resumed by its call() member function:

fiber.call();

Pauses itself by Fiber.yield():

void fiberFunc() { /* ... */ Fiber.yield(); /* ... */ }

The execution state of a fiber is determined by its .state property:

if (fiber.state == Fiber.State.TERM) { /* ... */ }

27

User threads

main IP IP

fiber
thread SP SP

Context switch is the same: replace IP, SP, and a few others.
As fast as a function call (almost).

CPU cache, TLB, etc. are not disturbed.

Trivial and mandatory example: the Fibonacci series

import core.thread;

void fibonacciSeries(ref int current) {

current = 0; // Note: 'current' is the parameter
int next = 1;

while (true) {
Fiber.yield();

/* Next call() will continue from this point */

const nextNext = current + next;
current = next;
next = nextNext;

}

void main() {
int current;
Fiber fiber = new Fiber(() => fibonacciSeries(current));

foreach (; 0 .. 10) {
fiber.call();

import std.stdio;
writef("%s ", current);

}

Unfortunately, this solution does not provide a range interface, uses a ref variable to
produce its result, and is too low level.

29

Generator to present a fiber as an InputRange

import std.stdio;
import std.range;
import std.concurrency;

/* Resolve the name conflict with std.range.Generator. */
alias FiberRange = std.concurrency.Generator;

void fibonacciSeries() {
int current = 0; // <-- Not a parameter anymore
int next = 1;

while (true) {
yield(current);

const nextNext = current + next;
current = next;
next = nextNext;

}

void main() {
auto series = new FiberRange!int(&fibonacciSeries);
writefln("%(%s %)", series.take(10));

30

Recursive tree traversal with a fiber

The only difference is yield() and the func parameter disappears:

volid traverse(const(Node) * node) {
if (!node) {
return;
}

traverse(node. left);
yield(node.element);
traverse(node.right);

Now there can be any number of trees, iterated any level deep.

31

D features that help with concurrenc

Thread-local by default; shared, immutable, gshared
Garbage collector

Synchronization

o synchronized

o core.sync

cas, atomicOp, and others

core.thread

std.concurrency

Fibers

32

Thread-local by default

Sharing mutable data is problematic. In D, global and static data are thread-
local by default.

* Must define data as shared to share data

e immutable is automatically shared

int a; // mutable but not shared
shared(int) b; // shared mutable (careful!)
C,
d;

immutable(int) // immutable and implicitly shared
__gshared int // C-style mutable global (careful!)

shared and immutable are overloadable function attributes

33

Garbage collector

No need to manage lifetimes with reference counting, etc.

import std.concurrency;
import std.random;
import std.range;

void worker() {

for (;;) {
receive(
(immutable(int[]) arr) {
// ...
}) s
}

}

int[] producer(int n) pure {
return iota(n).array;
}

volid main() A
auto w = spawn(&worker);
foreach (; 0 .. 100) {
immutable arr = producer(uniform(10, 100));
w.send(arr);

34

Synchronization

Useful features but these involve waiting, which better be avoided:

// Critical section
synchronized {

/...
}

Deadlock prevention by automatic ordering of locks:

synchronized (lockA, lockB) {
/] ...
}

Also see:

e core.sync.barrier

e core.sync.condition
e core.sync.mutex

e core.sync.rwmutex

¢ core.sync. semaphore

Direct modification of shared data is deprecated

import core.thread;
import std.stdio;
import std.concurrency;

shared(int) 1i;

void incrementor(size t n) {
foreach (; 0 .. n) {
++1; // deprecated and wrong
}

}

void main() {
foreach (; 0 .. 100) {
spawn(&incrementor, 1 000 000);
}

thread joinAll();
writeln(i);

Deprecation: read-modify-write operations are not allowed for shared
variables. Use core.atomic.atomicOp!"+="(i, 1) instead.

36

core.atomic.atomicOp

shared(int) 1i;
// ...

++1; // deprecated and wrong
import core.atomic;

/] ...

atomicOp!"+="(1i, 1); // correct

Also see atomicStore, atomiclLoad, etc.

37

core.atomic.cas

Compare-and-swap enables lock-free mutations:
1. Get the current value
2. Attempt to mutate if it has not been changed since step 1

3. Repeat from step 1 if unsuccessful

int current i;

do {
current i = 1i;
} while (!cas(&i, current i, current i + 1));

Meaning: "Set to current_i + 1 if it still has the value current_i".

cas enables lock-free data structures. (See Tony Van Eerd's entertaining
"Lock-free by Example" presentation to see how difficult it is to achieve.)

Issue: cas supports up-to 128-bit data; so, bit-packing can be used to mutate
more than one data atomically.

38

std.concurrency Module

Message-passing; a managable form of concurrency but can be slow because
receive() waits. (Also see receiveTimeout().)

import std.concurrency;

void main() {
auto worker = spawn(&func);

worker.send(42); // note different types of messages
worker.send("hello");

worker.send(Terminate());

}

struct Terminate {}

void func() {
bool done = false;

while ('done) {

receive(
(int msg) { /* ... */ },
(string msg) { /* ... */ },

(Terminate msg) { done = true; });

39

core.thread.Thread

Should be avoided because this is too low-level. Likely, you will invent
std.parallelims, std.concurrency, event loop, etc.

auto worker = new Thread(&foo).start;

40

41

10 handling

Input and output can be a lot slower than other operations. Waiting for 10
completion kills performance.

* Blocking synchronous

* Non-blocking synchronous; returns immediately but the result may or
may not be ready (e.g. read() may return less than the requested
number of bytes)

» Asynchronous; result is handled when 10 is complete

42

Event loop

A single-thread that waits for events and then dispatches their handlers.
* Reactor pattern; synchronous

o The callback is for an event (e.qg. "there is data")

o Event loop calls the callback and the callback does read
* Proactor pattern; asynchronous, better

o The callback is for completion

o The OS does the read and calls the callback when it completes

43

libasync

"written completely in D, features a cross-platform event loop and enhanced
connectivity and concurrency facilities for extremely lightweight
asynchronous tasks"

http://code.dlang.org/packages/libasync

Used by vibe.d and asynchronous

44

http://code.dlang.org/packages/libasync

vibe.d framework

Has everything (everything!)
"Asynchronous I/O that doesn’t get in your way, written in D"
http://vibed.org/

45

http://vibed.org/

asynchronous library

"provides infrastructure for writing concurrent code using coroutines,
multiplexing I/O access over sockets and other resources, running network
clients and servers, and other related primitives"

"implements most of the python 3 asyncio API"
"is a library and not a framework"

http://code.dlang.org/packages/asynchronous

46

http://code.dlang.org/packages/asynchronous

More asynchronous libraries

collie: An asynchronous event-driven network framework written in D.
http://code.dlang.org/packages/collie

future: "asynchronous return values and related functionality"
http://code.dlang.org/packages/future

simple_future: "Simple asynchronous functions"
http://code.dlang.org/packages/simple_future

etc.

47

http://code.dlang.org/packages/collie
http://code.dlang.org/packages/future
http://code.dlang.org/packages/simple_future

	Multitasking with D
	Ali Çehreli
	Contents
	Confusing related terms
	Multitasking
	Parallelism
	std.parallelism.parallel
	std.parallelism module
	Operating system and CPU internals
	Call stack
	Call stack is especially useful in recursion
	CPU registers
	Thread
	Two threads
	Three threads
	OS concurrency
	OS thread scheduler
	Partially unused time slice
	CPU and its caches
	Virtual memory
	Memory management unit (MMU)
	Context switch
	Fibers
	Same fringe problem
	Recursive tree traversal
	Surprising complexity
	Cooperative multitasking
	Fiber operations
	User threads
	Trivial and mandatory example: the Fibonacci series
	Generator to present a fiber as an InputRange
	Recursive tree traversal with a fiber
	D features that help with concurrency
	Thread-local by default
	Garbage collector
	Synchronization
	Direct modification of shared data is deprecated
	core.atomic.atomicOp
	core.atomic.cas
	std.concurrency Module
	core.thread.Thread
	Input and Output
	IO handling
	Event loop
	libasync
	vibe.d framework
	asynchronous library
	More asynchronous libraries

