
Magic Two Worlds Unique to D Rounding Bisection

Using Floating Point Without Losing Your Sanity

Don Clugston

Sociomantic Labs GmbH

May 2016

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sanity Checks

Sanity Checks

A Crisis of Confidence

The specialists, "Numerical Analysts", are rare -- yet ordinary
programmers need to use floating point

It’s more fun if you view it as magic

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sanity Checks

Sanity Checks

A Crisis of Confidence

The specialists, "Numerical Analysts", are rare -- yet ordinary
programmers need to use floating point

It’s more fun if you view it as magic

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sanity Checks

Sanity Checks

A Crisis of Confidence

The specialists, "Numerical Analysts", are rare -- yet ordinary
programmers need to use floating point

It’s more fun if you view it as magic

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sanity Checks

Sanity Checks

A Crisis of Confidence

The specialists, "Numerical Analysts", are rare -- yet ordinary
programmers need to use floating point

It’s more fun if you view it as magic

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

A Child’s Magic Trick

Think of a number ...

Double it

Add 8

Halve it

Take away the number you first thought of

And your answer is ...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

An Adult’s Magic Trick

Think of a floating point number...

float magic (float x)

{

return x + 35 - x;

}

magic(1000) == 35

magic(1_000_000_000) == 64

magic(5_000_000_000) == 0

"Catastrophic Cancellation"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

An Adult’s Magic Trick

Think of a floating point number...

float magic (float x)

{

return x + 35 - x;

}

magic(1000) == 35

magic(1_000_000_000) == 64

magic(5_000_000_000) == 0

"Catastrophic Cancellation"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

An Adult’s Magic Trick

Think of a floating point number...

float magic (float x)

{

return x + 35 - x;

}

magic(1000) == 35

magic(1_000_000_000) == 64

magic(5_000_000_000) == 0

"Catastrophic Cancellation"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

An Adult’s Magic Trick

Think of a floating point number...

float magic (float x)

{

return x + 35 - x;

}

magic(1000) == 35

magic(1_000_000_000) == 64

magic(5_000_000_000) == 0

"Catastrophic Cancellation"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

An Adult’s Magic Trick

Think of a floating point number...

float magic (float x)

{

return x + 35 - x;

}

magic(1000) == 35

magic(1_000_000_000) == 64

magic(5_000_000_000) == 0

"Catastrophic Cancellation"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Why does this happen?

A float is 32 bits wide. It can only store 4 billion different numbers.
1000000035 is not one of them.

1000000000 and 1000000064 are the closest available numbers

In float land, 1000000035 == 1000000064

Putting the uncountably infinite real number line...

... into a 32 bit float

We’re pulling a trillion rabbits out of a 32-bit hat

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Why does this happen?

A float is 32 bits wide. It can only store 4 billion different numbers.
1000000035 is not one of them.

1000000000 and 1000000064 are the closest available numbers

In float land, 1000000035 == 1000000064

Putting the uncountably infinite real number line...

... into a 32 bit float

We’re pulling a trillion rabbits out of a 32-bit hat

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Why does this happen?

A float is 32 bits wide. It can only store 4 billion different numbers.
1000000035 is not one of them.

1000000000 and 1000000064 are the closest available numbers

In float land, 1000000035 == 1000000064

Putting the uncountably infinite real number line...

... into a 32 bit float

We’re pulling a trillion rabbits out of a 32-bit hat

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Why does this happen?

A float is 32 bits wide. It can only store 4 billion different numbers.
1000000035 is not one of them.

1000000000 and 1000000064 are the closest available numbers

In float land, 1000000035 == 1000000064

Putting the uncountably infinite real number line...

... into a 32 bit float

We’re pulling a trillion rabbits out of a 32-bit hat

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Why does this happen?

A float is 32 bits wide. It can only store 4 billion different numbers.
1000000035 is not one of them.

1000000000 and 1000000064 are the closest available numbers

In float land, 1000000035 == 1000000064

Putting the uncountably infinite real number line...

... into a 32 bit float

We’re pulling a trillion rabbits out of a 32-bit hat

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Why does this happen?

A float is 32 bits wide. It can only store 4 billion different numbers.
1000000035 is not one of them.

1000000000 and 1000000064 are the closest available numbers

In float land, 1000000035 == 1000000064

Putting the uncountably infinite real number line...

... into a 32 bit float
We’re pulling a trillion rabbits out of a 32-bit hat

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a conjuring trick

Cannot exactly represent

PI

sqrt(2)

0.1

Addition isn’t even associative

(35 + 1000000000) - 1000000000 == 64

35 + (1000000000 - 1000000000) == 35

Why do we use such a grotesque, fraudulent type?

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a success story

All modern engineering is based on floating point calculations

Floating-point hardware is ubiquitous

Total GPU power exceeds CPU power

Despite being a horrendous approximation, 64 bit floating point is "good
enough"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a success story

All modern engineering is based on floating point calculations

Floating-point hardware is ubiquitous

Total GPU power exceeds CPU power

Despite being a horrendous approximation, 64 bit floating point is "good
enough"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a success story

All modern engineering is based on floating point calculations

Floating-point hardware is ubiquitous

Total GPU power exceeds CPU power

Despite being a horrendous approximation, 64 bit floating point is "good
enough"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating point is a success story

All modern engineering is based on floating point calculations

Floating-point hardware is ubiquitous

Total GPU power exceeds CPU power

Despite being a horrendous approximation, 64 bit floating point is "good
enough"

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Two worlds

The Mathematician’s World

The uncountably infinite real number line

The world where algebra works

The Magician’s World

In reality we only have 4-10 bytes

Sometimes we try too hard to stay in the Mathematician’s World

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Two worlds

The Mathematician’s World

The uncountably infinite real number line

The world where algebra works

The Magician’s World

In reality we only have 4-10 bytes

Sometimes we try too hard to stay in the Mathematician’s World

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Two worlds

The Mathematician’s World

The uncountably infinite real number line

The world where algebra works

The Magician’s World

In reality we only have 4-10 bytes

Sometimes we try too hard to stay in the Mathematician’s World

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Two worlds

The Mathematician’s World

The uncountably infinite real number line

The world where algebra works

The Magician’s World

In reality we only have 4-10 bytes

Sometimes we try too hard to stay in the Mathematician’s World

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Two worlds

The Mathematician’s World

The uncountably infinite real number line

The world where algebra works

The Magician’s World

In reality we only have 4-10 bytes

Sometimes we try too hard to stay in the Mathematician’s World

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Two worlds

The Mathematician’s World

The uncountably infinite real number line

The world where algebra works

The Magician’s World

In reality we only have 4-10 bytes

Sometimes we try too hard to stay in the Mathematician’s World

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

3 Misconceptions

BELIEF: Floating point arithmetic is "fuzzy", not deterministic

REALITY: Floats don’t obey normal algebra BUT they obey floating-point
algebra

Every exact int calculation is exact in double.

In fact a double is a 54 bit int with a bonus

BELIEF: "1000000064" means "every number between 1000000033 and
1000000095"

REALITY: 1000000064 means 1000000064. 1000000033 is an alias for
1000000064

BELIEF: Floating point is weird

REALITY: Most real-world measurements are similar

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floats are just ints with a scale

struct float {

bool sign;

int mantissa;

int exponent;

}

mantissa * 2 ^^ exponent

If exponent is 0, it really is an integer

Most important property is the precision: the number of bits in the
mantissa.

In D, float.mant_dig gives the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floats are just ints with a scale

struct float {

bool sign;

int mantissa;

int exponent;

}

mantissa * 2 ^^ exponent

If exponent is 0, it really is an integer

Most important property is the precision: the number of bits in the
mantissa.

In D, float.mant_dig gives the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floats are just ints with a scale

struct float {

bool sign;

int mantissa;

int exponent;

}

mantissa * 2 ^^ exponent

If exponent is 0, it really is an integer

Most important property is the precision: the number of bits in the
mantissa.

In D, float.mant_dig gives the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floats are just ints with a scale

struct float {

bool sign;

int mantissa;

int exponent;

}

mantissa * 2 ^^ exponent

If exponent is 0, it really is an integer

Most important property is the precision: the number of bits in the
mantissa.

In D, float.mant_dig gives the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Precision Budget

The larger the precision, the more extravagent you can be

float 22 bits

double 54 bits

real 64 bits

quadruple 112 bits

Operation Cost

Multiplication 1 bit

Division 1 bit

Addition Many

Take away the number you first thought
of

Bankrupt

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Funny Values

-0.0 exists, though it almost always means +0.0

It exists because tiny numbers get rounded to zero

If exponent is int.max, value is infinity or "Not a Number" (nan)

Infinity happens when:

Overflow: double.max * 2 == double.infinity

Division by zero: 1.0 / 0.0 == double.infinity

NaN happens when something evil happens

double.infinity - double.infinity is double.nan

0.0 / 0.0 is double.nan

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating Point Exceptions

The hardware can generate hardware traps when funny values are
produced. Most programs should enable the severe traps inside main()

FloatingPointControl fpctrl;

// Enable hardware exceptions for division by zero,

// overflow to infinity, and invalid operations

fpctrl.enableExceptions(FloatingPointControl.severeExceptions);

Unfortunately there is no way to detect Catastrophic Cancellation

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Floating Point Exceptions

The hardware can generate hardware traps when funny values are
produced. Most programs should enable the severe traps inside main()

FloatingPointControl fpctrl;

// Enable hardware exceptions for division by zero,

// overflow to infinity, and invalid operations

fpctrl.enableExceptions(FloatingPointControl.severeExceptions);

Unfortunately there is no way to detect Catastrophic Cancellation

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Don’t use =="

Why not? Because it destroys the illusion

"x == y" really means:
x and y are equal to as many significant figures as the CPU supports

Exposes the implementation

But +0.0 == -0.0

The horror: NaN != NaN

Some implementation details are hidden

== is still useful for low-level code and unittests.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Alternatives to ==

In D, "x is y" compares implementation, no tricks

Can we create a ’better ==’ ?

No :(

Reduce the number of bits that must be equal

std.math.feqrel gives number of equal bits

How many must be equal? Arbitrary!

In Physics, there is no "exact equality" either

Always need to specify the precision

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

How D Makes It Better

Standard IEEE arithmetic, bizarro implemenations are forbidden

Built-in floating point properties

max, epsilon, mant_dig, infinity, nan ...

Unit tests

static if

But sometimes we have Orwellian experiences...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

How D Makes It Better

Standard IEEE arithmetic, bizarro implemenations are forbidden

Built-in floating point properties

max, epsilon, mant_dig, infinity, nan ...

Unit tests

static if

But sometimes we have Orwellian experiences...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

How D Makes It Better

Standard IEEE arithmetic, bizarro implemenations are forbidden

Built-in floating point properties

max, epsilon, mant_dig, infinity, nan ...

Unit tests

static if

But sometimes we have Orwellian experiences...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

How D Makes It Better

Standard IEEE arithmetic, bizarro implemenations are forbidden

Built-in floating point properties

max, epsilon, mant_dig, infinity, nan ...

Unit tests

static if

But sometimes we have Orwellian experiences...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

How D Makes It Better

Standard IEEE arithmetic, bizarro implemenations are forbidden

Built-in floating point properties

max, epsilon, mant_dig, infinity, nan ...

Unit tests

static if

But sometimes we have Orwellian experiences...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

How D Makes It Better

Standard IEEE arithmetic, bizarro implemenations are forbidden

Built-in floating point properties

max, epsilon, mant_dig, infinity, nan ...

Unit tests

static if

But sometimes we have Orwellian experiences...

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Some Numerals Are More Equal Than Others

float x = 1.30;

assert(x == 1.30); // FAILS!!

assert(x == 1.30f); // OK

double y = 1.30;

assert(y == 1.30); // OK

assert(y == 1.30f); // OK?!!!!

assert(y == x); // FAILS

assert(1.30 == 1.30f); // OK!!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sociomantic’s Nine Trillion Dollar Bug

Losing your sanity, #1

if (price < 0) { error(); }

if (price) {

bid(lround(price));

}

price was NaN

In an auction, we made a bid of $9223372036855

DMD Issue #13489 - never do an implicit cast from float to bool unless
you can guarantee it is not NaN.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sociomantic’s Nine Trillion Dollar Bug

Losing your sanity, #1

if (price < 0) { error(); }

if (price) {

bid(lround(price));

}

price was NaN

In an auction, we made a bid of $9223372036855

DMD Issue #13489 - never do an implicit cast from float to bool unless
you can guarantee it is not NaN.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sociomantic’s Nine Trillion Dollar Bug

Losing your sanity, #1

if (price < 0) { error(); }

if (price) {

bid(lround(price));

}

price was NaN

In an auction, we made a bid of $9223372036855

DMD Issue #13489 - never do an implicit cast from float to bool unless
you can guarantee it is not NaN.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Sociomantic’s Nine Trillion Dollar Bug

Losing your sanity, #1

if (price < 0) { error(); }

if (price) {

bid(lround(price));

}

price was NaN

In an auction, we made a bid of $9223372036855

DMD Issue #13489 - never do an implicit cast from float to bool unless
you can guarantee it is not NaN.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Generic Programming

Mathematically, reals are an extension of integers

int and float both have hardware support

Replace ’int’ with ’double’ and everything will compile

Test cases will still work

So let’s make our code work with any numeric type!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Generic Programming

Mathematically, reals are an extension of integers

int and float both have hardware support

Replace ’int’ with ’double’ and everything will compile

Test cases will still work

So let’s make our code work with any numeric type!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Generic Programming

Mathematically, reals are an extension of integers

int and float both have hardware support

Replace ’int’ with ’double’ and everything will compile

Test cases will still work

So let’s make our code work with any numeric type!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Generic Programming

Mathematically, reals are an extension of integers

int and float both have hardware support

Replace ’int’ with ’double’ and everything will compile

Test cases will still work

So let’s make our code work with any numeric type!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Generic Programming

Mathematically, reals are an extension of integers

int and float both have hardware support

Replace ’int’ with ’double’ and everything will compile

Test cases will still work

So let’s make our code work with any numeric type!

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Any Numeric Type" is a Bad Idea

The code will compile, but it will be wrong for floats

The problem: Floats are a conjuring trick

Floats are not a subset of mathematical reals. Floats are not a superset
of int.

The VALUES are a superset of int

The SEMANTICS are not

For generic code we need common semantics

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Any Numeric Type" is a Bad Idea

The code will compile, but it will be wrong for floats

The problem: Floats are a conjuring trick

Floats are not a subset of mathematical reals. Floats are not a superset
of int.

The VALUES are a superset of int

The SEMANTICS are not

For generic code we need common semantics

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Any Numeric Type" is a Bad Idea

The code will compile, but it will be wrong for floats

The problem: Floats are a conjuring trick

Floats are not a subset of mathematical reals. Floats are not a superset
of int.

The VALUES are a superset of int

The SEMANTICS are not

For generic code we need common semantics

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Any Numeric Type" is a Bad Idea

The code will compile, but it will be wrong for floats

The problem: Floats are a conjuring trick

Floats are not a subset of mathematical reals. Floats are not a superset
of int.

The VALUES are a superset of int

The SEMANTICS are not

For generic code we need common semantics

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Any Numeric Type" is a Bad Idea

The code will compile, but it will be wrong for floats

The problem: Floats are a conjuring trick

Floats are not a subset of mathematical reals. Floats are not a superset
of int.

The VALUES are a superset of int

The SEMANTICS are not

For generic code we need common semantics

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"Any Numeric Type" is a Bad Idea

The code will compile, but it will be wrong for floats

The problem: Floats are a conjuring trick

Floats are not a subset of mathematical reals. Floats are not a superset
of int.

The VALUES are a superset of int

The SEMANTICS are not

For generic code we need common semantics

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Losing Your Sanity, #2

A simple foreach range

int doTen (T)(T from)

{

int howmany = 0;

foreach (x; from .. from + 10)

++howmany;

return howmany;

}

doTen!float(500) == 10

doTen!float(16777242) == 9

doTen!float(18000000) does not terminate

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Losing Your Sanity, #2

A simple foreach range

int doTen (T)(T from)

{

int howmany = 0;

foreach (x; from .. from + 10)

++howmany;

return howmany;

}

doTen!float(500) == 10

doTen!float(16777242) == 9

doTen!float(18000000) does not terminate

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Losing Your Sanity, #2

A simple foreach range

int doTen (T)(T from)

{

int howmany = 0;

foreach (x; from .. from + 10)

++howmany;

return howmany;

}

doTen!float(500) == 10

doTen!float(16777242) == 9

doTen!float(18000000) does not terminate

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Losing Your Sanity, #2

A simple foreach range

int doTen (T)(T from)

{

int howmany = 0;

foreach (x; from .. from + 10)

++howmany;

return howmany;

}

doTen!float(500) == 10

doTen!float(16777242) == 9

doTen!float(18000000) does not terminate

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Increment (or not)

For integers, ++x; --x; is a no-op
For floats it’s more fun

x After ++x; --x;

31837 31837

1.25e-6 1.20e-6

-1e-20 0

16777250 16777252

If you use ++ on a float, someone will go insane.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

isNumeric() in Phobos

All uses of isNumeric() are trivial, except two

std.complex just casts integers to floating point

std.random.dice() is incorrect for pathological cases

There are probably no mathematical algorithms that work for both
integers and floating point

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

isNumeric() in Phobos

All uses of isNumeric() are trivial, except two

std.complex just casts integers to floating point

std.random.dice() is incorrect for pathological cases

There are probably no mathematical algorithms that work for both
integers and floating point

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

isNumeric() in Phobos

All uses of isNumeric() are trivial, except two

std.complex just casts integers to floating point

std.random.dice() is incorrect for pathological cases

There are probably no mathematical algorithms that work for both
integers and floating point

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

isNumeric() in Phobos

All uses of isNumeric() are trivial, except two

std.complex just casts integers to floating point

std.random.dice() is incorrect for pathological cases

There are probably no mathematical algorithms that work for both
integers and floating point

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

More precision improves the illusion.

double magic (double x)

{

return x + 35 - x;

}

magic(1000000000) == 35

magic(5e17) == 64

Corner cases move but don’t disappear

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

More precision improves the illusion.

double magic (double x)

{

return x + 35 - x;

}

magic(1000000000) == 35

magic(5e17) == 64

Corner cases move but don’t disappear

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

More precision improves the illusion.

double magic (double x)

{

return x + 35 - x;

}

magic(1000000000) == 35

magic(5e17) == 64

Corner cases move but don’t disappear

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

More precision improves the illusion.

double magic (double x)

{

return x + 35 - x;

}

magic(1000000000) == 35

magic(5e17) == 64

Corner cases move but don’t disappear

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Rounding Modes

Rounding
Mode

2.5 -5.5

Round to Near-
est

2 -6

Round Up 3 -5

Round Down 2 -6

Round To Zero 2 -5

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum
precision of the calculation. They should not degrade or fail if the
actual precision is greater. -- The D Spec

Unfortunately this is not generally possible

Double rounding is a problem.

3.49 rounds down to 3

3.49 rounds up to 3.5, which rounds up to 4

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum
precision of the calculation. They should not degrade or fail if the
actual precision is greater. -- The D Spec

Unfortunately this is not generally possible

Double rounding is a problem.

3.49 rounds down to 3

3.49 rounds up to 3.5, which rounds up to 4

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum
precision of the calculation. They should not degrade or fail if the
actual precision is greater. -- The D Spec

Unfortunately this is not generally possible

Double rounding is a problem.

3.49 rounds down to 3

3.49 rounds up to 3.5, which rounds up to 4

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum
precision of the calculation. They should not degrade or fail if the
actual precision is greater. -- The D Spec

Unfortunately this is not generally possible

Double rounding is a problem.

3.49 rounds down to 3

3.49 rounds up to 3.5, which rounds up to 4

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Secret Precision

Extra hidden precision can happen when:

The x87 FPU is used on x86 machines

Processors support FMA (PPC, recent x86_64, Itanium...)

If we do float calculations at double precision

float (22 bits) * float == 44 bits precision

double has 54 bits. So no rounding happens! We’re OK.

If we do double calculations at real precision:

double (54 bits) * double == 118 bits precision

real only has 64 bits. We’ll round twice.

One in 1024 calculations has an out-by-1 error

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

In Practice

Most library code splits the possible input values into smaller ranges,
and then performs a different calculation for each range

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Root finding

Given a function

double f(double x), f(x0) > 0, f(x1) < 0

find the point where f(x) == 0

State Of The Art: TOMS 748. Inverse cubic polynomial fitting.

Every iteration triples number of known bits. Best case 5 calls to f(x)

If this fails, use binary chop. Gives one bit per iteration in the worst case.

But x => x*x*x; takes 1830 calls to converge!

With 80-bit reals, worst case is > 16000 calls

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Root finding

Given a function

double f(double x), f(x0) > 0, f(x1) < 0

find the point where f(x) == 0

State Of The Art: TOMS 748. Inverse cubic polynomial fitting.

Every iteration triples number of known bits. Best case 5 calls to f(x)

If this fails, use binary chop. Gives one bit per iteration in the worst case.

But x => x*x*x; takes 1830 calls to converge!

With 80-bit reals, worst case is > 16000 calls

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Root finding

Given a function

double f(double x), f(x0) > 0, f(x1) < 0

find the point where f(x) == 0

State Of The Art: TOMS 748. Inverse cubic polynomial fitting.

Every iteration triples number of known bits. Best case 5 calls to f(x)

If this fails, use binary chop. Gives one bit per iteration in the worst case.

But x => x*x*x; takes 1830 calls to converge!

With 80-bit reals, worst case is > 16000 calls

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Root finding

Given a function

double f(double x), f(x0) > 0, f(x1) < 0

find the point where f(x) == 0

State Of The Art: TOMS 748. Inverse cubic polynomial fitting.

Every iteration triples number of known bits. Best case 5 calls to f(x)

If this fails, use binary chop. Gives one bit per iteration in the worst case.

But x => x*x*x; takes 1830 calls to converge!

With 80-bit reals, worst case is > 16000 calls

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Root finding

Given a function

double f(double x), f(x0) > 0, f(x1) < 0

find the point where f(x) == 0

State Of The Art: TOMS 748. Inverse cubic polynomial fitting.

Every iteration triples number of known bits. Best case 5 calls to f(x)

If this fails, use binary chop. Gives one bit per iteration in the worst case.

But x => x*x*x; takes 1830 calls to converge!

With 80-bit reals, worst case is > 16000 calls

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Binary Chop That Isn’t

auto midpoint = (x0 + x1) / 2;

Let x0 == 1e100, x1 = 1e-100, and ultimate solution is 2e-100

Midpoints are 5e99, 2.5e99, 1.2e99, 6e98, ...

We get to 2e-100 after 600 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Binary Chop That Isn’t

auto midpoint = (x0 + x1) / 2;

Let x0 == 1e100, x1 = 1e-100, and ultimate solution is 2e-100

Midpoints are 5e99, 2.5e99, 1.2e99, 6e98, ...

We get to 2e-100 after 600 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

The Binary Chop That Isn’t

auto midpoint = (x0 + x1) / 2;

Let x0 == 1e100, x1 = 1e-100, and ultimate solution is 2e-100

Midpoints are 5e99, 2.5e99, 1.2e99, 6e98, ...

We get to 2e-100 after 600 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Binary Chop For Real

Midpoint in implementation space

ulong x0_raw = reinterpret!ulong(x0);

ulong x1_raw = reinterpret!ulong(x1);

auto midpoint = reinterpret!double(x0_raw + x1_raw) / 2;

Again let x0 == 1e100, x1 = 1e-100, and solution is 2e-100

Midpoints are 5e0, 2.5e-50, 1.2e-75, 6e-88, 3e-94 ...

We reach 2e-100 after 9 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Binary Chop For Real

Midpoint in implementation space

ulong x0_raw = reinterpret!ulong(x0);

ulong x1_raw = reinterpret!ulong(x1);

auto midpoint = reinterpret!double(x0_raw + x1_raw) / 2;

Again let x0 == 1e100, x1 = 1e-100, and solution is 2e-100

Midpoints are 5e0, 2.5e-50, 1.2e-75, 6e-88, 3e-94 ...

We reach 2e-100 after 9 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Binary Chop For Real

Midpoint in implementation space

ulong x0_raw = reinterpret!ulong(x0);

ulong x1_raw = reinterpret!ulong(x1);

auto midpoint = reinterpret!double(x0_raw + x1_raw) / 2;

Again let x0 == 1e100, x1 = 1e-100, and solution is 2e-100

Midpoints are 5e0, 2.5e-50, 1.2e-75, 6e-88, 3e-94 ...

We reach 2e-100 after 9 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Binary Chop For Real

Midpoint in implementation space

ulong x0_raw = reinterpret!ulong(x0);

ulong x1_raw = reinterpret!ulong(x1);

auto midpoint = reinterpret!double(x0_raw + x1_raw) / 2;

Again let x0 == 1e100, x1 = 1e-100, and solution is 2e-100

Midpoints are 5e0, 2.5e-50, 1.2e-75, 6e-88, 3e-94 ...

We reach 2e-100 after 9 iterations

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Performance Impact

For 80 bit reals, worst case improves from 16000 calls, to about 150.

TOMS 748 has a similar problem with linear interpolation

Fixing that improves the average case as well.

Available in std.numeric.findRoot

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Performance Impact

For 80 bit reals, worst case improves from 16000 calls, to about 150.

TOMS 748 has a similar problem with linear interpolation

Fixing that improves the average case as well.

Available in std.numeric.findRoot

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Performance Impact

For 80 bit reals, worst case improves from 16000 calls, to about 150.

TOMS 748 has a similar problem with linear interpolation

Fixing that improves the average case as well.

Available in std.numeric.findRoot

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Performance Impact

For 80 bit reals, worst case improves from 16000 calls, to about 150.

TOMS 748 has a similar problem with linear interpolation

Fixing that improves the average case as well.

Available in std.numeric.findRoot

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Moral

Even when floating point code compiles, and gives the
mathematically correct answer, it can still be algorithmically wrong

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Summary

Floating point is a trick created for engineers, not mathematicians.

"Take away the number you first thought of" destroys the illusion

More precision improves the illusion, but corner cases remain

float requires great care. Prefer double or real.

Use == only when you want to expose implementation details

Generic numeric code is almost certainly wrong in horrible, subtle ways

D is (mostly) a pleasant language for floating point.

Using Floating Point Without Losing Your Sanity Don Clugston

Magic Two Worlds Unique to D Rounding Bisection

Questions?

www.sociomantic.com

Using Floating Point Without Losing Your Sanity Don Clugston

	Magic
	Two Worlds
	Unique to D
	Rounding
	Bisection

