Using Floating Point Without Losing Your Sanity

Don Clugston

Sociomantic Labs GmbH

May 2016

Sanity Checks

- Sanity Checks

Sanity Checks

- Sanity Checks
- A Crisis of Confidence

Sanity Checks

- Sanity Checks
- A Crisis of Confidence
- The specialists, "Numerical Analysts", are rare -- yet ordinary programmers need to use floating point

Sanity Checks

- Sanity Checks
- A Crisis of Confidence
- The specialists, "Numerical Analysts", are rare -- yet ordinary programmers need to use floating point
- It's more fun if you view it as magic

A Child's Magic Trick

Think of a number ...
Double it
Add 8
Halve it
Take away the number you first thought of And your answer is ...

An Adult's Magic Trick

- Think of a floating point number...

```
float magic ( float x )
{
return \(x+35-x\);
\}
```

4ロ・4司•4 ㅋ․

An Adult's Magic Trick

- Think of a floating point number...

```
float magic ( float x )
{
    return x + 35-x;
}
```

- magic (1000) == 35

An Adult's Magic Trick

- Think of a floating point number...

```
float magic ( float x )
{
    return x + 35-x;
}
```

- magic(1000) == 35
- magic (1_000_000_000) == 64

An Adult's Magic Trick

- Think of a floating point number...

```
float magic ( float x )
{
    return x + 35-x;
}
```

- magic(1000) == 35
- magic(1_000_000_000) == 64
- magic(5_000_000_000) == 0

An Adult's Magic Trick

- Think of a floating point number...

```
float magic ( float x )
{
return x + 35-x;
}
```

- magic (1000) == 35
- magic(1_000_000_000) == 64
- magic(5_000_000_000) == 0
- "Catastrophic Cancellation"

Why does this happen?

- A float is 32 bits wide. It can only store 4 billion different numbers. 1000000035 is not one of them.

Why does this happen?

- A float is 32 bits wide. It can only store 4 billion different numbers. 1000000035 is not one of them.
- 1000000000 and 1000000064 are the closest available numbers

Why does this happen?

- A float is 32 bits wide. It can only store 4 billion different numbers. 1000000035 is not one of them.
- 1000000000 and 1000000064 are the closest available numbers
- In float land, $1000000035==1000000064$

Why does this happen?

- A float is 32 bits wide. It can only store 4 billion different numbers. 1000000035 is not one of them.
- 1000000000 and 1000000064 are the closest available numbers
- In float land, $1000000035==1000000064$
- Putting the uncountably infinite real number line...

Why does this happen?

- A float is 32 bits wide. It can only store 4 billion different numbers. 1000000035 is not one of them.
- 1000000000 and 1000000064 are the closest available numbers
- In float land, $1000000035==1000000064$
- Putting the uncountably infinite real number line...
- ... into a 32 bit float

Why does this happen?

- A float is 32 bits wide. It can only store 4 billion different numbers. 1000000035 is not one of them.
- 1000000000 and 1000000064 are the closest available numbers
- In float land, $1000000035==1000000064$
- Putting the uncountably infinite real number line...
- ... into a 32 bit float

We're pulling a trillion rabbits out of a 32-bit hat

Floating point is a conjuring trick

- Cannot exactly represent

Floating point is a conjuring trick

- Cannot exactly represent
- PI

Floating point is a conjuring trick

- Cannot exactly represent
- PI
- sqrt(2)

Floating point is a conjuring trick

- Cannot exactly represent
- PI
- sqrt(2)
- 0.1

Floating point is a conjuring trick

- Cannot exactly represent
- PI
- sqrt(2)
- 0.1
- Addition isn't even associative

Floating point is a conjuring trick

- Cannot exactly represent
- PI
- sqrt(2)
- 0.1
- Addition isn't even associative
- $(35+1000000000)-1000000000==64$

Floating point is a conjuring trick

- Cannot exactly represent
- PI
- sqrt(2)
- 0.1
- Addition isn't even associative
- $(35+1000000000)-1000000000==64$
- $35+(1000000000-1000000000)==35$

Floating point is a conjuring trick

- Cannot exactly represent
- PI
- sqrt(2)
- 0.1
- Addition isn't even associative
- $(35+1000000000)-1000000000==64$
- $35+(1000000000-1000000000)==35$
- Why do we use such a grotesque, fraudulent type?

Floating point is a success story

- All modern engineering is based on floating point calculations

Floating point is a success story

- All modern engineering is based on floating point calculations
- Floating-point hardware is ubiquitous

Floating point is a success story

- All modern engineering is based on floating point calculations
- Floating-point hardware is ubiquitous
- Total GPU power exceeds CPU power

Floating point is a success story

- All modern engineering is based on floating point calculations
- Floating-point hardware is ubiquitous
- Total GPU power exceeds CPU power
- Despite being a horrendous approximation, 64 bit floating point is "good enough"

Two worlds

- The Mathematician's World

4ロ・4司•4 ㅋ․

Two worlds

- The Mathematician's World
- The uncountably infinite real number line

4ロ・4司•4 ㅋ․

Two worlds

- The Mathematician's World
- The uncountably infinite real number line
- The world where algebra works

Two worlds

- The Mathematician's World
- The uncountably infinite real number line
- The world where algebra works
- The Magician's World

Two worlds

- The Mathematician's World
- The uncountably infinite real number line
- The world where algebra works
- The Magician's World
- In reality we only have 4-10 bytes

Two worlds

- The Mathematician's World
- The uncountably infinite real number line
- The world where algebra works
- The Magician's World
- In reality we only have 4-10 bytes
- Sometimes we try too hard to stay in the Mathematician's World

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra
- Every exact int calculation is exact in double.

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra
- Every exact int calculation is exact in double.
- In fact a double is a 54 bit int with a bonus

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra
- Every exact int calculation is exact in double.
- In fact a double is a 54 bit int with a bonus
- BELIEF: "1000000064" means "every number between 1000000033 and 1000000095"

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra
- Every exact int calculation is exact in double.
- In fact a double is a 54 bit int with a bonus
- BELIEF: "1000000064" means "every number between 1000000033 and 1000000095"
- REALITY: 1000000064 means 1000000064. 1000000033 is an alias for 1000000064

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra
- Every exact int calculation is exact in double.
- In fact a double is a 54 bit int with a bonus
- BELIEF: "1000000064" means "every number between 1000000033 and 1000000095"
- REALITY: 1000000064 means 1000000064. 1000000033 is an alias for 1000000064
- BELIEF: Floating point is weird

3 Misconceptions

- BELIEF: Floating point arithmetic is "fuzzy", not deterministic
- REALITY: Floats don't obey normal algebra BUT they obey floating-point algebra
- Every exact int calculation is exact in double.
- In fact a double is a 54 bit int with a bonus
- BELIEF: "1000000064" means "every number between 1000000033 and 1000000095"
- REALITY: 1000000064 means 10000000064. 1000000033 is an alias for 1000000064
- BELIEF: Floating point is weird
- REALITY: Most real-world measurements are similar

Floats are just ints with a scale

struct float \{
bool sign; int mantissa; int exponent;
\}

- mantissa * $2^{\wedge \wedge}$ exponent

Floats are just ints with a scale

struct float \{
bool sign; int mantissa; int exponent;
\}

- mantissa * $2^{\wedge \wedge}$ exponent
- If exponent is 0 , it really is an integer

Floats are just ints with a scale

struct float \{
bool sign;
int mantissa; int exponent;
\}

- mantissa * $2^{\wedge \wedge}$ exponent
- If exponent is 0 , it really is an integer
- Most important property is the precision: the number of bits in the mantissa.

Floats are just ints with a scale

struct float \{
bool sign;
int mantissa; int exponent;
\}

- mantissa * 2 ^^ exponent
- If exponent is 0 , it really is an integer
- Most important property is the precision: the number of bits in the mantissa.
- In D, float.mant_dig gives the precision

The Precision Budget

The larger the precision, the more extravagent you can be

float	22 bits
double	54 bits
real	64 bits
quadruple	112 bits

Operation	Cost
Multiplication	1 bit
Division	1 bit
Addition	Many
Take away the number you first thought of	Bankrupt

The Funny Values

- -0.0 exists, though it almost always means +0.0

4ロ・4司•4 ㅋ․

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)
- Infinity happens when:

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)
- Infinity happens when:
- Overflow: double.max * 2 == double.infinity

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)
- Infinity happens when:
- Overflow: double.max * 2 == double.infinity
- Division by zero: 1.0 / 0.0 == double.infinity

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)
- Infinity happens when:
- Overflow: double.max * 2 == double.infinity
- Division by zero: 1.0 / 0.0 == double.infinity
- NaN happens when something evil happens

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)
- Infinity happens when:
- Overflow: double.max * 2 == double.infinity
- Division by zero: 1.0 / $0.0==$ double.infinity
- NaN happens when something evil happens
- double.infinity - double.infinity is double.nan

The Funny Values

- -0.0 exists, though it almost always means +0.0
- It exists because tiny numbers get rounded to zero
- If exponent is int.max, value is infinity or "Not a Number" (nan)
- Infinity happens when:
- Overflow: double.max * 2 == double.infinity
- Division by zero: 1.0 / 0.0 == double.infinity
- NaN happens when something evil happens
- double.infinity - double.infinity is double.nan
- 0.0 / 0.0 is double.nan

4ロ・4司•4 ㅋ․

Floating Point Exceptions

- The hardware can generate hardware traps when funny values are produced. Most programs should enable the severe traps inside main()

FloatingPointControl fpctrl;
// Enable hardware exceptions for division by zero,
// overflow to infinity, and invalid operations fpctrl.enableExceptions(FloatingPointControl.severeExceptions);

Floating Point Exceptions

- The hardware can generate hardware traps when funny values are produced. Most programs should enable the severe traps inside main()

FloatingPointControl fpctrl;
// Enable hardware exceptions for division by zero,
// overflow to infinity, and invalid operations fpctrl.enableExceptions(FloatingPointControl.severeExceptions);

- Unfortunately there is no way to detect Catastrophic Cancellation
"Don't use =="
- Why not? Because it destroys the illusion

"Don't use =="

- Why not? Because it destroys the illusion
- " $x==y$ " really means: x and y are equal to as many significant figures as the CPU supports
- Why not? Because it destroys the illusion
- " $x==y$ " really means: x and y are equal to as many significant figures as the CPU supports
- Exposes the implementation

"Don't use =="

- Why not? Because it destroys the illusion
- "x == y" really means: x and y are equal to as many significant figures as the CPU supports
- Exposes the implementation
- But $+0.0==-0.0$

"Don’t use =="

- Why not? Because it destroys the illusion
- " $x==y$ " really means: x and y are equal to as many significant figures as the CPU supports
- Exposes the implementation
- But $+0.0==-0.0$
- The horror: NaN != NaN

"Don’t use =="

- Why not? Because it destroys the illusion
- " $x==y$ " really means: x and y are equal to as many significant figures as the CPU supports
- Exposes the implementation
- But $+0.0==-0.0$
- The horror: NaN != NaN
- Some implementation details are hidden

"Don’t use =="

- Why not? Because it destroys the illusion
- " $x==y$ " really means:
x and y are equal to as many significant figures as the CPU supports
- Exposes the implementation
- But $+0.0=-0.0$
- The horror: NaN != NaN
- Some implementation details are hidden
- == is still useful for low-level code and unittests.

Alternatives to ==

- In D, "x is y" compares implementation, no tricks

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?
- No :(

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?
- No :(
- Reduce the number of bits that must be equal

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?
- No :(
- Reduce the number of bits that must be equal
- std.math.feqrel gives number of equal bits

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?
- No :(
- Reduce the number of bits that must be equal
- std.math.feqrel gives number of equal bits
- How many must be equal? Arbitrary!

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?
- No :(
- Reduce the number of bits that must be equal
- std.math.feqrel gives number of equal bits
- How many must be equal? Arbitrary!
- In Physics, there is no "exact equality" either

Alternatives to ==

- In D, "x is y" compares implementation, no tricks
- Can we create a 'better ==' ?
- No :(
- Reduce the number of bits that must be equal
- std.math.feqrel gives number of equal bits
- How many must be equal? Arbitrary!
- In Physics, there is no "exact equality" either
- Always need to specify the precision

How D Makes It Better

- Standard IEEE arithmetic, bizarro implemenations are forbidden

How D Makes It Better

- Standard IEEE arithmetic, bizarro implemenations are forbidden
- Built-in floating point properties

How D Makes It Better

- Standard IEEE arithmetic, bizarro implemenations are forbidden
- Built-in floating point properties
- max, epsilon, mant_dig, infinity, nan ...

How D Makes It Better

- Standard IEEE arithmetic, bizarro implemenations are forbidden
- Built-in floating point properties
- max, epsilon, mant_dig, infinity, nan ...
- Unit tests

How D Makes It Better

- Standard IEEE arithmetic, bizarro implemenations are forbidden
- Built-in floating point properties
- max, epsilon, mant_dig, infinity, nan ...
- Unit tests
- static if

How D Makes It Better

- Standard IEEE arithmetic, bizarro implemenations are forbidden
- Built-in floating point properties
- max, epsilon, mant_dig, infinity, nan ...
- Unit tests
- static if
- But sometimes we have Orwellian experiences...

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($\mathrm{x}==1.30$); // FAILS!!

4ロ・4可•4 ㄹ․

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($\mathrm{x}==1.30$); // FAILS!!
- assert($x==1.30 f$); // OK

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($\mathrm{x}==1.30$); // FAILS!!
- assert($x==1.30 f$); // OK
- double $\mathrm{y}=1.30$;

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($\mathrm{x}==1.30$); // FAILS!!
- assert($x==1.30 f$); // OK
- double $y=1.30$;
- $\operatorname{assert}(\mathrm{y}==1.30)$; // OK

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($x==1.30$); // FAILS!!
- assert($x==1.30 f$); // OK
- double $y=1.30$;
- $\operatorname{assert}(\mathrm{y}==1.30$); // OK
- assert ($\mathrm{y}==1.30 \mathrm{f}$); // OK?!!!!

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($x==1.30$); // FAILS!!
- assert($x==1.30 f$); // OK
- double $y=1.30$;
- $\operatorname{assert}(\mathrm{y}==1.30$); // OK
- assert ($\mathrm{y}==1.30 \mathrm{f}$); // OK?!!!!
- assert $(\mathrm{y}=\mathrm{=} \mathrm{x}$); // FAILS

Some Numerals Are More Equal Than Others

- float $\mathrm{x}=1.30$;
- assert($x==1.30$); // FAILS!!
- assert($x==1.30 f$); // OK
- double $y=1.30$;
- $\operatorname{assert}(\mathrm{y}==1.30$); // OK
- assert($\mathrm{y}==1.30 \mathrm{f})$; // OK?!!!!
- assert ($\mathrm{y}=\mathrm{=} \mathrm{x}$); // FAILS
- assert($1.30==1.30 f$); // OK!!

Sociomantic's Nine Trillion Dollar Bug

- Losing your sanity, \#1

```
if ( price < 0 ) { error(); }
if ( price ) {
    bid( Iround( price ) );
}
```


Sociomantic's Nine Trillion Dollar Bug

- Losing your sanity, \#1

```
if ( price < 0 ) { error(); }
if ( price ) {
        bid( Iround( price ) );
}
```

- price was NaN

Sociomantic's Nine Trillion Dollar Bug

- Losing your sanity, \#1

```
if ( price < 0 ) { error(); }
if ( price ) {
        bid( Iround( price ) );
}
```

- price was NaN
- In an auction, we made a bid of $\$ 9223372036855$

Sociomantic's Nine Trillion Dollar Bug

- Losing your sanity, \#1

```
if ( price < 0 ) { error(); }
if ( price ) {
    bid( Iround( price ) );
}
```

- price was NaN
- In an auction, we made a bid of $\$ 9223372036855$
- DMD Issue \#13489 - never do an implicit cast from float to bool unless you can guarantee it is not NaN .

Generic Programming

- Mathematically, reals are an extension of integers

Generic Programming

- Mathematically, reals are an extension of integers
- int and float both have hardware support

Generic Programming

- Mathematically, reals are an extension of integers
- int and float both have hardware support
- Replace 'int' with 'double' and everything will compile

Generic Programming

- Mathematically, reals are an extension of integers
- int and float both have hardware support
- Replace 'int' with 'double' and everything will compile
- Test cases will still work

Generic Programming

- Mathematically, reals are an extension of integers
- int and float both have hardware support
- Replace 'int' with 'double' and everything will compile
- Test cases will still work
- So let's make our code work with any numeric type!

"Any Numeric Type" is a Bad Idea

- The code will compile, but it will be wrong for floats

"Any Numeric Type" is a Bad Idea

- The code will compile, but it will be wrong for floats
- The problem: Floats are a conjuring trick

"Any Numeric Type" is a Bad Idea

- The code will compile, but it will be wrong for floats
- The problem: Floats are a conjuring trick
- Floats are not a subset of mathematical reals. Floats are not a superset of int.

"Any Numeric Type" is a Bad Idea

- The code will compile, but it will be wrong for floats
- The problem: Floats are a conjuring trick
- Floats are not a subset of mathematical reals. Floats are not a superset of int.
- The VALUES are a superset of int

"Any Numeric Type" is a Bad Idea

- The code will compile, but it will be wrong for floats
- The problem: Floats are a conjuring trick
- Floats are not a subset of mathematical reals. Floats are not a superset of int.
- The VALUES are a superset of int
- The SEMANTICS are not

"Any Numeric Type" is a Bad Idea

- The code will compile, but it will be wrong for floats
- The problem: Floats are a conjuring trick
- Floats are not a subset of mathematical reals. Floats are not a superset of int.
- The VALUES are a superset of int
- The SEMANTICS are not
- For generic code we need common semantics

Losing Your Sanity, \#2

- A simple foreach range
int doTen (T) (T from)
\{
int howmany $=0$;
foreach (x ; from .. from + 10)
++howmany;
return howmany;
\}

4ロ・4司•4 ㅋ․

Losing Your Sanity, \#2

- A simple foreach range

```
int doTen ( T )( T from )
```

\{
int howmany $=0$;
foreach (x ; from .. from + 10)
++howmany;
return howmany;
\}

- doTen!float (500) == 10

Losing Your Sanity, \#2

- A simple foreach range

```
int doTen ( T )( T from )
```

\{
int howmany $=0$;
foreach (x ; from .. from + 10)
++howmany;
return howmany;
\}

- doTen!float(500) == 10
- doTen!float(16777242) == 9

Losing Your Sanity, \#2

- A simple foreach range
int doTen (T)(T from)
\{
int howmany $=0$;
foreach (x ; from .. from + 10)
++howmany;
return howmany;
\}
- doTen!float(500) == 10
- doTen!float(16777242) == 9
- doTen!float(18000000) does not terminate

Increment (or not)

For integers, ++x; --x; is a no-op
For floats it's more fun

\mathbf{x}	After ++x; --x;
31837	31837
$1.25 \mathrm{e}-6$	$1.20 \mathrm{e}-6$
$-1 \mathrm{e}-20$	0
16777250	16777252

- If you use ++ on a float, someone will go insane.

isNumeric() in Phobos

- All uses of isNumeric() are trivial, except two

isNumeric() in Phobos

- All uses of isNumeric() are trivial, except two
- std.complex just casts integers to floating point

isNumeric() in Phobos

- All uses of isNumeric() are trivial, except two
- std.complex just casts integers to floating point
- std.random.dice() is incorrect for pathological cases

isNumeric() in Phobos

- All uses of isNumeric() are trivial, except two
- std.complex just casts integers to floating point
- std.random.dice() is incorrect for pathological cases
- There are probably no mathematical algorithms that work for both integers and floating point

"More Precision Is Always Better"

- More precision improves the illusion.
double magic (double x)
\{
return $x+35-x$;
\}

4ロ・4司•4 ㅋ․

"More Precision Is Always Better"

- More precision improves the illusion.
double magic (double x)
\{
return $x+35-x$;
\}
- magic $(1000000000)==35$

"More Precision Is Always Better"

- More precision improves the illusion.
double magic (double x)
\{
return $x+35-x$;
\}
- magic(1000000000) $==35$
- magic $(5 \mathrm{e} 17)==64$

"More Precision Is Always Better"

- More precision improves the illusion.
double magic (double x)
\{
return $x+35-x$;
\}
- magic(1000000000) $==35$
- magic(5e17) == 64
- Corner cases move but don't disappear

Rounding Modes

Rounding Mode	$\mathbf{2 . 5}$	$\mathbf{- 5 . 5}$
Round to Near- est	2	-6
Round Up	3	-5
Round Down	2	-6
Round To Zero	2	-5

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum precision of the calculation. They should not degrade or fail if the actual precision is greater. -- The D Spec

- Unfortunately this is not generally possible

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum precision of the calculation. They should not degrade or fail if the actual precision is greater. -- The D Spec

- Unfortunately this is not generally possible
- Double rounding is a problem.

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum precision of the calculation. They should not degrade or fail if the actual precision is greater. -- The D Spec

- Unfortunately this is not generally possible
- Double rounding is a problem.
- 3.49 rounds down to 3

"More Precision Is Always Better"

Algorithms should be written to work based on the minimum precision of the calculation. They should not degrade or fail if the actual precision is greater. -- The D Spec

- Unfortunately this is not generally possible
- Double rounding is a problem.
- 3.49 rounds down to 3
- 3.49 rounds up to 3.5 , which rounds up to 4

Secret Precision

- Extra hidden precision can happen when:

4ロ・4司•4 ㅋ․

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision
- float (22 bits) * float $==44$ bits precision

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision
- float (22 bits) * float $==44$ bits precision
- double has 54 bits. So no rounding happens! We're OK.

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision
- float (22 bits) * float $==44$ bits precision
- double has 54 bits. So no rounding happens! We're OK.
- If we do double calculations at real precision:

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision
- float (22 bits) * float $==44$ bits precision
- double has 54 bits. So no rounding happens! We're OK.
- If we do double calculations at real precision:
- double (54 bits) * double == 118 bits precision

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision
- float (22 bits) * float $==44$ bits precision
- double has 54 bits. So no rounding happens! We're OK.
- If we do double calculations at real precision:
- double (54 bits) * double == 118 bits precision
- real only has 64 bits. We'll round twice.

Secret Precision

- Extra hidden precision can happen when:
- The $x 87$ FPU is used on $x 86$ machines
- Processors support FMA (PPC, recent x86_64, Itanium...)
- If we do float calculations at double precision
- float (22 bits) * float $==44$ bits precision
- double has 54 bits. So no rounding happens! We're OK.
- If we do double calculations at real precision:
- double (54 bits) * double == 118 bits precision
- real only has 64 bits. We'll round twice.
- One in 1024 calculations has an out-by-1 error

In Practice

Most library code splits the possible input values into smaller ranges, and then performs a different calculation for each range

Root finding

Given a function double $\mathrm{f}($ double x), $\mathrm{f}(\mathrm{x} 0)>0, f(\mathrm{x} 1)<0$
find the point where $f(x)==0$

- State Of The Art: TOMS 748. Inverse cubic polynomial fitting.

Root finding

Given a function double $\mathrm{f}($ double x), $\mathrm{f}(\mathrm{x} 0)>0, f(\mathrm{x} 1)<0$
find the point where $f(x)==0$

- State Of The Art: TOMS 748. Inverse cubic polynomial fitting.
- Every iteration triples number of known bits. Best case 5 calls to $f(x)$

Root finding

Given a function
double $\mathrm{f}($ double x), $\mathrm{f}(\mathrm{x} 0)>0, f(\mathrm{x} 1)<0$
find the point where $f(x)==0$

- State Of The Art: TOMS 748. Inverse cubic polynomial fitting.
- Every iteration triples number of known bits. Best case 5 calls to $f(x)$
- If this fails, use binary chop. Gives one bit per iteration in the worst case.

Root finding

Given a function
double $\mathrm{f}($ double x), $\mathrm{f}(\mathrm{x} 0)>0, f(\mathrm{x} 1)<0$
find the point where $f(x)==0$

- State Of The Art: TOMS 748. Inverse cubic polynomial fitting.
- Every iteration triples number of known bits. Best case 5 calls to $f(x)$
- If this fails, use binary chop. Gives one bit per iteration in the worst case.
- But $x=>x^{*} x^{*} x$; takes 1830 calls to converge!

Root finding

Given a function
double $f($ double $x), f(x 0)>0, f(x 1)<0$
find the point where $f(x)==0$

- State Of The Art: TOMS 748. Inverse cubic polynomial fitting.
- Every iteration triples number of known bits. Best case 5 calls to $f(x)$
- If this fails, use binary chop. Gives one bit per iteration in the worst case.
- But $x=>x^{*} x^{*} x$; takes 1830 calls to converge!
- With 80 -bit reals, worst case is >16000 calls

The Binary Chop That Isn't

auto midpoint $=(x 0+x 1) / 2$;

- Let $x 0=1 \mathrm{e} 100, \mathrm{x} 1=1 \mathrm{e}-100$, and ultimate solution is $2 \mathrm{e}-100$

The Binary Chop That Isn't

auto midpoint $=(x 0+x 1) / 2$;

- Let $x 0=1 \mathrm{e} 100, \mathrm{x} 1=1 \mathrm{e}-100$, and ultimate solution is $2 \mathrm{e}-100$
- Midpoints are 5e99, 2.5e99, 1.2e99, 6e98, ...

The Binary Chop That Isn't

auto midpoint $=(x 0+x 1) / 2$;

- Let $x 0=1 \mathrm{e} 100, \mathrm{x} 1=1 \mathrm{e}-100$, and ultimate solution is $2 \mathrm{e}-100$
- Midpoints are 5e99, 2.5e99, 1.2e99, 6e98, ...
- We get to 2e-100 after 600 iterations

Binary Chop For Real

- Midpoint in implementation space
ulong x0_raw = reinterpret!ulong(x0);
ulong x1_raw = reinterpret!ulong(x1);
auto midpoint $=$ reinterpret!double(x0_raw + x1_raw) / 2;

Binary Chop For Real

- Midpoint in implementation space
ulong x0_raw = reinterpret!ulong(x0);
ulong x1_raw = reinterpret!ulong(x1);
auto midpoint $=$ reinterpret!double(x0_raw + x1_raw) / 2;
- Again let $x 0==1 e 100, x 1=1 e-100$, and solution is $2 e-100$

Binary Chop For Real

- Midpoint in implementation space
ulong x0_raw = reinterpret!ulong(x0);
ulong $\times 1$ _raw $=$ reinterpret!ulong(x1);
auto midpoint $=$ reinterpret!double $\left(x 0 _\right.$raw $+x 1 _$raw $) / 2$;
- Again let $x 0==1 \mathrm{e} 100, \mathrm{x} 1=1 \mathrm{e}-100$, and solution is $2 \mathrm{e}-100$
- Midpoints are 5e0, 2.5e-50, 1.2e-75, 6e-88, 3e-94 ...

Binary Chop For Real

- Midpoint in implementation space
ulong x0_raw = reinterpret!ulong(x0); ulong x1_raw = reinterpret!ulong(x1); auto midpoint = reinterpret!double(x0_raw + x1_raw) / 2;
- Again let $x 0==1 e 100, x 1=1 e-100$, and solution is $2 e-100$
- Midpoints are 5e0, 2.5e-50, 1.2e-75, 6e-88, 3e-94 ...
- We reach $2 \mathrm{e}-100$ after 9 iterations

Performance Impact

- For 80 bit reals, worst case improves from 16000 calls, to about 150.

Performance Impact

- For 80 bit reals, worst case improves from 16000 calls, to about 150.
- TOMS 748 has a similar problem with linear interpolation

Performance Impact

- For 80 bit reals, worst case improves from 16000 calls, to about 150.
- TOMS 748 has a similar problem with linear interpolation
- Fixing that improves the average case as well.

Performance Impact

- For 80 bit reals, worst case improves from 16000 calls, to about 150.
- TOMS 748 has a similar problem with linear interpolation
- Fixing that improves the average case as well.
- Available in std.numeric.findRoot

Moral

Even when floating point code compiles, and gives the mathematically correct answer, it can still be algorithmically wrong

Summary

- Floating point is a trick created for engineers, not mathematicians.

Summary

- Floating point is a trick created for engineers, not mathematicians.
- "Take away the number you first thought of" destroys the illusion

Summary

- Floating point is a trick created for engineers, not mathematicians.
- "Take away the number you first thought of" destroys the illusion
- More precision improves the illusion, but corner cases remain

Summary

- Floating point is a trick created for engineers, not mathematicians.
- "Take away the number you first thought of" destroys the illusion
- More precision improves the illusion, but corner cases remain
- float requires great care. Prefer double or real.

Summary

- Floating point is a trick created for engineers, not mathematicians.
- "Take away the number you first thought of" destroys the illusion
- More precision improves the illusion, but corner cases remain
- float requires great care. Prefer double or real.
- Use == only when you want to expose implementation details

Summary

- Floating point is a trick created for engineers, not mathematicians.
- "Take away the number you first thought of" destroys the illusion
- More precision improves the illusion, but corner cases remain
- float requires great care. Prefer double or real.
- Use == only when you want to expose implementation details
- Generic numeric code is almost certainly wrong in horrible, subtle ways

Summary

- Floating point is a trick created for engineers, not mathematicians.
- "Take away the number you first thought of" destroys the illusion
- More precision improves the illusion, but corner cases remain
- float requires great care. Prefer double or real.
- Use == only when you want to expose implementation details
- Generic numeric code is almost certainly wrong in horrible, subtle ways
- D is (mostly) a pleasant language for floating point.

Questions?

www.sociomantic.com

