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Javascript and HTML are awesome

e No explicit types

e Variables may be undefined

e Repetition repetition repetition

e No templates

e No compile time function execution

e No compile time
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¢ Retain type-information of data from DB to Client’s

Browser
o Keeping things DRY
e Performance

o Get things done



Vibe.d and Diet
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o Powerful asynchronous I/O and web toolkit for D
e Uses Fibers and Threads

e 71 — M mapping

o yield()

e async 1O

e async DB connectivity for MongoDB, Redis, MySQL
¢ You don’t need to care about async
o Web interface generator

o REST interface generator



REST Interface Generator

interface MyAPI {
// GET /weather —> responds {”text”: 7...7, 7
— temperature”: ...}
Weather getWeather () ;



REST Interface Generator

interface MyAPI {
// GET /weather —> responds {”’text”:
— temperature”: ...}
Weather getWeather () ;

b » b

}

class MyAPIImplementation : MyAPI {
auto weather = [ 7sunny”, "rainy”, 7cats and dogs”

— , 7snow” |;

Weather getWeather () {
return Weather (
weather [uniform (0, weather.length)],
uniform (—10,30)

) ;



REST Interface Generator

new URLRouter;
router.get(”/”, staticTemplate!”index.dt”);
router.get (”/main.html”, staticTemplate!”main.dt”);

auto router

router.registerRestInterface |MyAPI(new
— MyAPIImplementation, restsettings):;



REST Interface Generator

auto router = new URLRouter;
router.get(”/”, staticTemplate!”index.dt”);
router.get (”/main.html”, staticTemplate!”main.dt”);

router.registerRestInterface |MyAPI(new
— MyAPIImplementation, restsettings):;

struct Weather {
string text;
double temperature;



AngularJS Typescript

interface Weather {
text : string ,

temperature : number
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AngularJS Typescript

interface Weather {
text : string ,

temperature : number

}

interface MainScope extends ng.IScope {
weather: Weather

}

class MainCtrl {
public static $inject = [ ’$scope’, ’$http’ ];

constructor (private $scope: MainScope,
private $http : ng.IHttpService)

this.weather () ;



AngularJS Typescript

weather () : void {

var s = ’/weather’;

this.$http.get(s).success ((data : Weather) = {
this.$scope.weather = data;

1)



doctype html
html (ng—app="myapp”)
head
title DConf 2016 Weather
— javascript (7./angular.js”);
— javascript (7./angular—route.js”);
— javascript (7./myapp. js”);

body
div (ng—view)



doctype html
html (ng—app="myapp”)
head
title DConf 2016 Weather
— javascript (7./angular.js”);
— javascript (7./angular—route.js”);
— javascript (7./myapp. js”);

body
div (ng—view)

— void javascript (string name)
script (sre="#{name}”)



.container
p {{weather.text}}
p {{weather.temperature }}

button (type="submit” ,ng—click="ctrl.weather();”)
— Get Weather

10



Live Demo
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struct Weather {
string text;
double temperature;

Dlang
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Dataflow from the Server to the Frontend and back again

struct Weather {
string text;
double temperature;

}
Dlang
interface Weather {
text : string,
tempereture : number
}
Typescript

11



dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather
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dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather

struct Weather {
string text;
double temperature;

import std.format;

foreach (it; _  traits(allMembers, Weather))



dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather

struct Weather {
string text;

double temperature;
} \ interface Weather {

text : string,
temperature : number

}

/

import std.format;

foreach (it; _  traits(allMembers, Weather))

12



Everything is wrong







Everything is wrong

o All we solved was a tiny specific problem

o What about server to database

e What if we would use Dart instead of Typescript

e How do we communicate the overall architecture

e How do we keep the architecture in sync with the code

e How do we communicate with non-developer
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Everything is wrong

o All we solved was a tiny specific problem

o What about server to database

e What if we would use Dart instead of Typescript

e How do we communicate the overall architecture

e How do we keep the architecture in sync with the code

e How do we communicate with non-developer

. How do we deal with change?

14



Everything is still wrong

o Waterfall Model
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Everything is still wrong

o Waterfall Model < no change, never
e UML < just kill me already

Help

o Agile Methods + just hacking, with fancy names

o Hacking < no plan to speak of, just change

15



What do we want

e Speak about the system at different levels of detail
with different people

e Quickly introduce people to the system
o Keep data classes (Model) synchronized across

o Frontend
e Server

o Database

o Write only one model for everything, to keep stuff in sync
o Have description line based, because git

o Generate everything possible from the model

16



Introducing the C4 Architecture




System Context

The system plus users
and system dependencies

Overview

] first
Containers

The overall shape of the architecture
and technology choices

Components Zoom and

Logical components and their .
interactions within a container fl lter

Classes Details

Component or pattern

implementation details on demand




Anonymous User

Aggregated User Admin User

{sign-in with Twitter D) {sign-in with Twitter 1D}

Manage user profile and
tribe membership.

View people, tribes
(businesses, communities
and interest groups),
content, events, jobs, etc
from the local tech, digital
and IT sector.

Y

Add people, add tribes and
manage tribe membership.

techtribes. je

(00
| () |




Econtainer>> coLonLaner> > LLonamner>x

Relational Database File System NnSQL Data Store
MyS0L 5.5.x MongoDB 2.2 x
Stores people, tribes, tribe RloREsEE Niaues Stores content from R35/
membership, talks, events, Atom feeds (blog posts)
jabs, badges, GitHub repos, and tweets.
etc.

N

Reads from and writes data to
< <containersx»

[SQL/JDBC, port 3306] \
Content Updater

Standalone Java 7 process

Reads from and writes data to

Writes to [Momgo DB Wire Protocol, port 27017]

Updates profiles, tweets,
GitHub repos and content
on a scheduled basis.

Gets data from Gets data from
[HTTF] Gets data from [HTTP]
[HTTP]
1 <«external system== ¥ ==external system»> 1 <<external system=»

1 Twitter . ' GitHub . 1 Blogs



<« containers» w<gontainer»» <ocontainers»

Relational File System HoSQL Data Store
Database MongoDB 2.2.x
MySQL 5.5.x
. -~ b 7 —-__
Updates A A Updates
Updates Updates
L . AR A
< <COMPONent == |  «<components» | <<component s> | <<component=»
GitHub Search News Feed Entry Twitter
Component Component Component Component
Spring Bean + JDBC Spring Bean + Lucena Spring Bean + MongoDd Spring Bean + MongoDB
Provides access to the Search facilities for Provides access to blog Provides access to
set of GitHub repos. news feed entries and entries and news. tweets.
tweets.
" a4 b “ 4

Updates search

, - Stores tweets
indexes using

using

Updates GitHub

repos using Stores blog

entries using

p e———— “ <<Component>»
rﬁj:h:lllrﬁljs . Scheduled cu::-mpi ui ,'.E,.,t*
ontent Jypdater
Content Updater Spring Bean + log4j

Spring Scheduled Task
Provwvidac lnooina




Structurizr

o Implements C4 Architecture Model
e Java library to build the model
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Structurizr

o Implements C4 Architecture Model
e Java library to build the model
o Its code, its fits into git

e Structurizr generates code

. Only Java and .net

21
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How hard can it be




How do we approach the development

o We're not gonne create a new language
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How do we approach the development

o We're not gonne create a new language, at first, most likely
o The model (ast) is pretty simple

e The world

o The world has

o Actors, software/hardware systems

e A software systems has

o Containers (everything with a unique pid)

e A container has

o Components (think module) and classes

e A component has

e Components and classes

o Classes have members

o Connections between the above
e« UML Association, Aggregation, Composition, Dependency,

¢ Additional informations, names, descriptions 3



Using Degenerator 1/2

auto world = new TheWorld (”TheWorld”) ;
Actor users = world.getOrNewActor (”The Users”);
users.description = "This is a way to long

— description for something

~ 7that should be obvious.”;

auto system = world.getOrNewSoftwareSystem (”

— AwesomeSoftware”) ;

24



Using Degenerator 1/2

auto world = new TheWorld (”TheWorld”) ;
Actor users = world.getOrNewActor (”The Users”);
users.description = "This is a way to long

— description for something

~ 7that should be obvious.”;

auto system = world.getOrNewSoftwareSystem (”

— AwesomeSoftware”) ;

Container frontend = system.getOrNewContainer (”
— Frontend”);
frontend . technology = "Angular”;

auto frontendUserCtrl = frontend .getOrNewComponent (
— "frontUserCtrl”);

24



Using Degenerator 2/4

auto database = system.getOrNewContainer(”Database”
= );

database.technology = "MySQL” ;

world . getOrNew ! Dependency (”serverDatabase” |
server , database

).description = "CRUD”;
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Using Degenerator 2/4

auto database = system.getOrNewContainer(”Database”
= );

database.technology = "MySQL” ;

world . getOrNew ! Dependency (”serverDatabase” |
server , database

).description = "CRUD”;

Class user = getOrNewClass(”User”,
frontendUserCtrl, serverUserCtrl, database

) ;
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Using Degenerator 3/4

Class user = getOrNewClass(”User”,
frontendUserCtrl, serverUserCtrl, database

)3
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Using Degenerator 3/4

Class user = getOrNewClass(”User”,
frontendUserCtrl, serverUserCtrl, database

)3

MemberVariable userld = user.getOrNew!
— MemberVariable (7id”) ;
userld.type = integer;
userld.addLandSpecificAttribute ("MySQL”, "PRIMARY
= KEY");
userld.addLandSpecificAttribute ("MySQL”, "AUTO
— INCREMENT”) ;

26



Using Degenerator 4/4

Class address = getOrNewClass(”Address”,
frontendUserCtrl, serverUserCtrl, database

)3
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Using Degenerator 4/4

Class address = getOrNewClass(”Address”,
frontendUserCtrl, serverUserCtrl, database

)3

Aggregation userAddress = world.getOrNew!
— Aggregation(”addressUser”,
address, user

)3

27



Types in Degenerator

o Types
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Types in Degenerator

o Types e.g. strings are not always strings
o D string
o MySQL text
o CH+ std::string

struct Type {
string name;

string [string] typeMapping;

auto pwdHash = Type(”PasswordString”);
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Types in Degenerator

o Types e.g. strings are not always strings
o D string
o MySQL text
o CH+ std::string

struct Type {
string name;
string [string] typeMapping;

}

auto pwdHash = Type(”PasswordString”);

pwdHash . typeMappings ["D”] = 7string”;

pwdHash . typeMappings [ "MySQL”] = "VARCHAR(128)";

28



Graphvic gv = new Graphvic(world, ”GraphvizOutput”);

gv.generate () ;

MySQL mysql = new MySQL(world, "MySQL”);
mysql. generate (database) ;

29



The World

The Users
This is a way to long description for
something that should be obvious.

Uses the Stuff Logic
of the Awesome
Software

Uses the frontend to
do stuff.

AwesomeSoftware
[Software System]
The awesome system to develop.

SomeHardware
[Hardware System]

30



The World and Containers

AwesomeSoftware
Uses the Stuff Logic [Software System]
of the Awesome The awesome system to develop.
Software
— & Frontend
Uses the frontend to HTTPS
[Angular]
do stuff. Server CRUD Database
[D] MySQLI
The Users
This is a way to long description for SomeHardware
something that should be obvious. [Hardware System]
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Awesome Software System

AwesomeSoftware
[Software System]
The awesome system to develop.

Server
[D1
serverUser Ctrl Frontend
[Component] [Angular]
- Database frontUser Ctrl
utils
[Component] MySQLI [Component] frontStuffCtrl
Address Best component name ever! PostalCode Address [Component]
[Class] [Class] [Class]
long func(long a, string b) LONG id number func(number a, string b)
long id LONG code number id
glser Address glser
1[ “_j [Class] ! Zss]_d
. O;'gin LONG func(LONG a, TEXT b) u'_‘“"l‘ e:“‘
string lastname LONG id string lastrame
string firsthame l string firstame
User
[Class]
LONGid
TEXT lasthame
TEXT firstname




Generating the Database CREATE TABLE Statements

CREATE TABLE Address {
id LONG PRIMARY KEY
};

CREATE TABLE Address User {

User id LONG

FOREIGN KEY(User_id)
— REFERENCES User (id) ON
— UPDATE CASCADE ON
<+ DELETE CASCADE,

Address id LONG

FOREIGN KEY(Address_id)
— REFERENCES Address(id)
— ON UPDATE CASCADE ON
— DELETE CASCADE

CREATE TABLE User {
id LONG PRIMARY KEY AUTO
— INCREMENT,
lastname TEXT,
firstname TEXT
b

CREATE TABLE PostelCode {

id LONG PRIMARY KEY AUTO
< INCREMENT,

code LONG,

Address_id LONG

FOREIGN KEY(Address_id)
< REFERENCES Address(id)
— ON UPDATE CASCADE ON
— DELETE CASCADE

33



What can we generate

o Diagrams describing the project at different levels of detail
e Database schema

e phpmyadmin clones

o Database access code

o Data objects (D struct/class, Typescript interface/class, ...
e Server skeletons

o Frontend skeletons
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What can we generate

o Diagrams describing the project at different levels of detail
e Database schema

e phpmyadmin clones

o Database access code

o Data objects (D struct/class, Typescript interface/class, ...
e Server skeletons

e Frontend skeletons

o Graphviz mostly done, MySQL is getting there, Vibe.d and

Angular2 next
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The End

o vibe.d https://vibed.org
o typescript https://www.typescriptlang.org/

o dstructtotypescript
https://github.com/burner/dstructtotypescript

o C4 Architecture (Simon Brown)

http://www.codingthearchitecture.com
e Structurizr https://structurizr.com/

e Degenerator https://github.com/burner/Degenerator
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