Asynchronous Single Page Applications
without a Line of HTML or Javascript.

Or why D is just awesome

Robert "burner” Schadek
May 5, 2016

DConf

Javascript and HTML are awesome

e No explicit types

e Variables may be undefined

e Repetition repetition repetition

e No templates

e No compile time function execution

e No compile time

¢ Retain type-information of data from DB to Client’s

Browser

¢ Retain type-information of data from DB to Client’s

Browser

o Keeping things DRY

¢ Retain type-information of data from DB to Client’s

Browser
o Keeping things DRY

e Performance

¢ Retain type-information of data from DB to Client’s

Browser
o Keeping things DRY
e Performance

o Get things done

Vibe.d and Diet

o Powerful asynchronous I/O and web toolkit for D
o Uses Fibers and Threads

o Powerful asynchronous I/O and web toolkit for D
e Uses Fibers and Threads

e 71 — M mapping

o yield()

e async 1O

o Powerful asynchronous I/O and web toolkit for D
e Uses Fibers and Threads

e 71 — M mapping

o yield()

e async 1O

e async DB connectivity for MongoDB, Redis, MySQL
¢ You don’t need to care about async
o Web interface generator

o REST interface generator

REST Interface Generator

interface MyAPI {
// GET /weather —> responds {”text”: 7...7, 7
— temperature”: ...}
Weather getWeather () ;

REST Interface Generator

interface MyAPI {
// GET /weather —> responds {”’text”:
— temperature”: ...}
Weather getWeather () ;

b » b

}

class MyAPIImplementation : MyAPI {
auto weather = [7sunny”, "rainy”, 7cats and dogs”

— , 7snow” |;

Weather getWeather () {
return Weather (
weather [uniform (0, weather.length)],
uniform (—10,30)

) ;

REST Interface Generator

new URLRouter;
router.get(”/”, staticTemplate!”index.dt”);
router.get (”/main.html”, staticTemplate!”main.dt”);

auto router

router.registerRestInterface |MyAPI(new
— MyAPIImplementation, restsettings):;

REST Interface Generator

auto router = new URLRouter;
router.get(”/”, staticTemplate!”index.dt”);
router.get (”/main.html”, staticTemplate!”main.dt”);

router.registerRestInterface |MyAPI(new
— MyAPIImplementation, restsettings):;

struct Weather {
string text;
double temperature;

AngularJS Typescript

interface Weather {
text : string ,

temperature : number

AngularJS Typescript

interface Weather {
text : string ,
temperature : number

}

interface MainScope extends ng.IScope {
weather: Weather

AngularJS Typescript

interface Weather {
text : string ,

temperature : number

}

interface MainScope extends ng.IScope {
weather: Weather

}

class MainCtrl {
public static $inject = [’$scope’, ’$http’];

constructor (private $scope: MainScope,
private $http : ng.IHttpService)

this.weather () ;

AngularJS Typescript

weather () : void {

var s = ’/weather’;

this.$http.get(s).success ((data : Weather) = {
this.$scope.weather = data;

1)

doctype html
html (ng—app="myapp”)
head
title DConf 2016 Weather
— javascript (7./angular.js”);
— javascript (7./angular—route.js”);
— javascript (7./myapp. js”);

body
div (ng—view)

doctype html
html (ng—app="myapp”)
head
title DConf 2016 Weather
— javascript (7./angular.js”);
— javascript (7./angular—route.js”);
— javascript (7./myapp. js”);

body
div (ng—view)

— void javascript (string name)
script (sre="#{name}”)

.container
p {{weather.text}}
p {{weather.temperature }}

button (type="submit” ,ng—click="ctrl.weather();”)
— Get Weather

10

Live Demo

Dataflow from the Server to the

Frontend and back again

Dataflow from the Server to the Frontend and back again

struct Weather {
string text;
double temperature;

Dlang

11

Dataflow from the Server to the Frontend and back again

struct Weather {
string text;
double temperature;

}
Dlang
interface Weather {
text : string,
tempereture : number
}
Typescript

11

dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather

12

dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather

struct Weather {
string text;
double temperature;

dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather

struct Weather {
string text;
double temperature;

import std.format;

foreach (it; _ traits(allMembers, Weather))

dstructtotypescript

dstructtotypescript -i weather.d -p weather.ts -s
<~ Weather

struct Weather {
string text;

double temperature;
} \ interface Weather {

text : string,
temperature : number

}

/

import std.format;

foreach (it; _ traits(allMembers, Weather))

12

Everything is wrong

Everything is wrong

o All we solved was a tiny specific problem

o What about server to database

e What if we would use Dart instead of Typescript

e How do we communicate the overall architecture

e How do we keep the architecture in sync with the code

e How do we communicate with non-developer

14

Everything is wrong

o All we solved was a tiny specific problem

o What about server to database

e What if we would use Dart instead of Typescript

e How do we communicate the overall architecture

e How do we keep the architecture in sync with the code

e How do we communicate with non-developer

. How do we deal with change?

14

Everything is still wrong

o Waterfall Model

15

Everything is still wrong

o Waterfall Model < no change, never

15

Everything is still wrong

o Waterfall Model < no change, never

o Hacking

15

Everything is still wrong

o Waterfall Model < no change, never

o Hacking < no plan to speak of, just change

15

Everything is still wrong

o Waterfall Model < no change, never

o Agile Methods

o Hacking < no plan to speak of, just change

15

Everything is still wrong

o Waterfall Model < no change, never

o Agile Methods + just hacking, with fancy names

o Hacking < no plan to speak of, just change

15

Everything is still wrong

o Waterfall Model < no change, never
« UML

o Agile Methods + just hacking, with fancy names

o Hacking < no plan to speak of, just change

15

Everything is still wrong

o Waterfall Model < no change, never
e UML < just kill me already

o Agile Methods + just hacking, with fancy names

o Hacking < no plan to speak of, just change

15

Everything is still wrong

o Waterfall Model < no change, never
e UML < just kill me already

o Agile Methods + just hacking, with fancy names

o Hacking < no plan to speak of, just change

15

Everything is still wrong

o Waterfall Model < no change, never
e UML < just kill me already

Help

o Agile Methods + just hacking, with fancy names

o Hacking < no plan to speak of, just change

15

What do we want

e Speak about the system at different levels of detail
with different people

e Quickly introduce people to the system
o Keep data classes (Model) synchronized across

o Frontend
e Server

o Database

o Write only one model for everything, to keep stuff in sync
o Have description line based, because git

o Generate everything possible from the model

16

Introducing the C4 Architecture

System Context

The system plus users
and system dependencies

Overview

] first
Containers

The overall shape of the architecture
and technology choices

Components Zoom and

Logical components and their .
interactions within a container fl lter

Classes Details

Component or pattern

implementation details on demand

Anonymous User

Aggregated User Admin User

{sign-in with Twitter D) {sign-in with Twitter 1D}

Manage user profile and
tribe membership.

View people, tribes
(businesses, communities
and interest groups),
content, events, jobs, etc
from the local tech, digital
and IT sector.

Y

Add people, add tribes and
manage tribe membership.

techtribes. je

(00
| () |

Econtainer>> coLonLaner> > LLonamner>x

Relational Database File System NnSQL Data Store
MyS0L 5.5.x MongoDB 2.2 x
Stores people, tribes, tribe RloREsEE Niaues Stores content from R35/
membership, talks, events, Atom feeds (blog posts)
jabs, badges, GitHub repos, and tweets.
etc.

N

Reads from and writes data to
< <containersx»

[SQL/JDBC, port 3306] \
Content Updater

Standalone Java 7 process

Reads from and writes data to

Writes to [Momgo DB Wire Protocol, port 27017]

Updates profiles, tweets,
GitHub repos and content
on a scheduled basis.

Gets data from Gets data from
[HTTF] Gets data from [HTTP]
[HTTP]
1 <«external system== ¥ ==external system»> 1 <<external system=»

1 Twitter . ' GitHub . 1 Blogs

<« containers» w<gontainer»» <ocontainers»

Relational File System HoSQL Data Store
Database MongoDB 2.2.x
MySQL 5.5.x
. -~ b 7 —-__
Updates A A Updates
Updates Updates
L . AR A
< <COMPONent == | «<components» | <<component s> | <<component=»
GitHub Search News Feed Entry Twitter
Component Component Component Component
Spring Bean + JDBC Spring Bean + Lucena Spring Bean + MongoDd Spring Bean + MongoDB
Provides access to the Search facilities for Provides access to blog Provides access to
set of GitHub repos. news feed entries and entries and news. tweets.
tweets.
" a4 b “ 4

Updates search

, - Stores tweets
indexes using

using

Updates GitHub

repos using Stores blog

entries using

p e———— “ <<Component>»
rﬁj:h:lllrﬁljs . Scheduled cu::-mpi ui ,'.E,.,t*
ontent Jypdater
Content Updater Spring Bean + log4j

Spring Scheduled Task
Provwvidac lnooina

Structurizr

o Implements C4 Architecture Model
e Java library to build the model

21

Structurizr

o Implements C4 Architecture Model
e Java library to build the model
o Its code, its fits into git

21

Structurizr

o Implements C4 Architecture Model
e Java library to build the model
o Its code, its fits into git

e Structurizr generates code

21

Structurizr

o Implements C4 Architecture Model
e Java library to build the model
o Its code, its fits into git

e Structurizr generates code

. Only Java and .net

21

WHALTHE 2,

How hard can it be

How do we approach the development

o We're not gonne create a new language

23

How do we approach the development

o We're not gonne create a new language, at first

23

How do we approach the development

o We're not gonne create a new language, at first, most likely

23

How do we approach the development

o We're not gonne create a new language, at first, most likely
o The model (ast) is pretty simple

23

How do we approach the development

o We're not gonne create a new language, at first, most likely
o The model (ast) is pretty simple

e The world

o The world has

o Actors, software/hardware systems

e A software systems has

o Containers (everything with a unique pid)

e A container has

o Components (think module) and classes

e A component has

e Components and classes

o Classes have members

o Connections between the above
e« UML Association, Aggregation, Composition, Dependency,

¢ Additional informations, names, descriptions 3

Using Degenerator 1/2

auto world = new TheWorld (”TheWorld”) ;
Actor users = world.getOrNewActor (”The Users”);
users.description = "This is a way to long

— description for something

~ 7that should be obvious.”;

auto system = world.getOrNewSoftwareSystem (”

— AwesomeSoftware”) ;

24

Using Degenerator 1/2

auto world = new TheWorld (”TheWorld”) ;
Actor users = world.getOrNewActor (”The Users”);
users.description = "This is a way to long

— description for something

~ 7that should be obvious.”;

auto system = world.getOrNewSoftwareSystem (”

— AwesomeSoftware”) ;

Container frontend = system.getOrNewContainer (”
— Frontend”);
frontend . technology = "Angular”;

auto frontendUserCtrl = frontend .getOrNewComponent (
— "frontUserCtrl”);

24

Using Degenerator 2/4

auto database = system.getOrNewContainer(”Database”
=);

database.technology = "MySQL” ;

world . getOrNew ! Dependency (”serverDatabase” |
server , database

).description = "CRUD”;

25

Using Degenerator 2/4

auto database = system.getOrNewContainer(”Database”
=);

database.technology = "MySQL” ;

world . getOrNew ! Dependency (”serverDatabase” |
server , database

).description = "CRUD”;

Class user = getOrNewClass(”User”,
frontendUserCtrl, serverUserCtrl, database

) ;

25

Using Degenerator 3/4

Class user = getOrNewClass(”User”,
frontendUserCtrl, serverUserCtrl, database

)3

26

Using Degenerator 3/4

Class user = getOrNewClass(”User”,
frontendUserCtrl, serverUserCtrl, database

)3

MemberVariable userld = user.getOrNew!
— MemberVariable (7id”) ;
userld.type = integer;
userld.addLandSpecificAttribute ("MySQL”, "PRIMARY
= KEY");
userld.addLandSpecificAttribute ("MySQL”, "AUTO
— INCREMENT”) ;

26

Using Degenerator 4/4

Class address = getOrNewClass(”Address”,
frontendUserCtrl, serverUserCtrl, database

)3

27

Using Degenerator 4/4

Class address = getOrNewClass(”Address”,
frontendUserCtrl, serverUserCtrl, database

)3

Aggregation userAddress = world.getOrNew!
— Aggregation(”addressUser”,
address, user

)3

27

Types in Degenerator

o Types

28

Types in Degenerator

o Types e.g. strings are not always strings

28

Types in Degenerator

o Types e.g. strings are not always strings
o D string
o MySQL text
o CH+ std::string

28

Types in Degenerator

o Types e.g. strings are not always strings
o D string
o MySQL text
o CH+ std::string

struct Type {
string name;

string [string] typeMapping;

auto pwdHash = Type(”PasswordString”);

28

Types in Degenerator

o Types e.g. strings are not always strings
o D string
o MySQL text
o CH+ std::string

struct Type {
string name;
string [string] typeMapping;

}

auto pwdHash = Type(”PasswordString”);

pwdHash . typeMappings ["D”] = 7string”;

pwdHash . typeMappings ["MySQL”] = "VARCHAR(128)";

28

Graphvic gv = new Graphvic(world, ”GraphvizOutput”);

gv.generate () ;

MySQL mysql = new MySQL(world, "MySQL”);
mysql. generate (database) ;

29

The World

The Users
This is a way to long description for
something that should be obvious.

Uses the Stuff Logic
of the Awesome
Software

Uses the frontend to
do stuff.

AwesomeSoftware
[Software System]
The awesome system to develop.

SomeHardware
[Hardware System]

30

The World and Containers

AwesomeSoftware
Uses the Stuff Logic [Software System]
of the Awesome The awesome system to develop.
Software
— & Frontend
Uses the frontend to HTTPS
[Angular]
do stuff. Server CRUD Database
[D] MySQLI
The Users
This is a way to long description for SomeHardware
something that should be obvious. [Hardware System]

31

Awesome Software System

AwesomeSoftware
[Software System]
The awesome system to develop.

Server
[D1
serverUser Ctrl Frontend
[Component] [Angular]
- Database frontUser Ctrl
utils
[Component] MySQLI [Component] frontStuffCtrl
Address Best component name ever! PostalCode Address [Component]
[Class] [Class] [Class]
long func(long a, string b) LONG id number func(number a, string b)
long id LONG code number id
glser Address glser
1[“_j [Class] ! Zss]_d
. O;'gin LONG func(LONG a, TEXT b) u'_‘“"l‘ e:“‘
string lastname LONG id string lastrame
string firsthame l string firstame
User
[Class]
LONGid
TEXT lasthame
TEXT firstname

Generating the Database CREATE TABLE Statements

CREATE TABLE Address {
id LONG PRIMARY KEY
};

CREATE TABLE Address User {

User id LONG

FOREIGN KEY(User_id)
— REFERENCES User (id) ON
— UPDATE CASCADE ON
<+ DELETE CASCADE,

Address id LONG

FOREIGN KEY(Address_id)
— REFERENCES Address(id)
— ON UPDATE CASCADE ON
— DELETE CASCADE

CREATE TABLE User {
id LONG PRIMARY KEY AUTO
— INCREMENT,
lastname TEXT,
firstname TEXT
b

CREATE TABLE PostelCode {

id LONG PRIMARY KEY AUTO
< INCREMENT,

code LONG,

Address_id LONG

FOREIGN KEY(Address_id)
< REFERENCES Address(id)
— ON UPDATE CASCADE ON
— DELETE CASCADE

33

What can we generate

o Diagrams describing the project at different levels of detail
e Database schema

e phpmyadmin clones

o Database access code

o Data objects (D struct/class, Typescript interface/class, ...
e Server skeletons

o Frontend skeletons

34

What can we generate

o Diagrams describing the project at different levels of detail
e Database schema

e phpmyadmin clones

o Database access code

o Data objects (D struct/class, Typescript interface/class, ...
e Server skeletons

e Frontend skeletons

o Graphviz mostly done, MySQL is getting there, Vibe.d and

Angular2 next

34

The End

o vibe.d https://vibed.org
o typescript https://www.typescriptlang.org/

o dstructtotypescript
https://github.com/burner/dstructtotypescript

o C4 Architecture (Simon Brown)

http://www.codingthearchitecture.com
e Structurizr https://structurizr.com/

e Degenerator https://github.com/burner/Degenerator

36

https://vibed.org
https://www.typescriptlang.org/
https://github.com/burner/dstructtotypescript
http://www.codingthearchitecture.com
https://structurizr.com/
https://github.com/burner/Degenerator

	Vibe.d and Diet
	Vibe.d
	Angular Typescript
	Diet

	Live Demo
	Dataflow from the Server to the Frontend and back again
	Everything is wrong
	Introducing the C4 Architecture
	How hard can it be

