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• Inspired by Christopher Alexander’s (actual)

architecture work

• Reusable solutions to reoccurring problems

within given contexts

• Heyday in early 2000s

• Overselling and rebuttals predictably followed

• Left a lasting influence on design

methodologies



Policy-Based Design

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 4 / 45

• Coined by “Modern C++ Design” in 2001

• Enjoys use in C++, D

• Inducted in Wikipedia’s “hall of fame” at

http://en.wikipedia.org/wiki/Programming_paradigm

(along with 75 others)

http://en.wikipedia.org/wiki/Programming_paradigm


Patterns & Policy-Based Design
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• Approaches on the same core issue:

• Design elements reoccur in response to

typical problems

• Patterns: programmer is the generator

• Policy-Based Design: programmer controls

the generator



To Wit
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“[...] the Design Patterns solution

is to turn the programmer into a

fancy macro processor.”

– Mark Dominus



Policy-Based Design (PBD)
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• Def: Assembling a design by mixing

components (policies) during compilation

• Nothing new:

◦ Interface-based programming

◦ Template Method pattern

• Yet:

◦ Compile-time assembly offers extra static

checking

◦ “Frictionless abstraction” makes PBD

suitable for good design of low-level

components



Segue to Policies
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• Semi-automated “macro” preprocessing

+ Better software reuse

+ Excellent static checking

+ Ultimate efficiency in time and space

− Run-time rigid

− No graceful degradation

− Compile-time dependent



Typical Policy-Based Design
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struct Widget(T, Prod, Error) {

private T _frob;

private Prod _producer;

private Error _errPolicy;

void doWork() {

... rely on implicit interfaces ...

}

}



Design by Introspection
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Plenty of Room at the Bottom
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“What would happen if we could

arrange the atoms one by one the

way we want them?”

– Richard P. Feynman



Core Idea
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• Patterns: programmer “expands” mental

macros

◦ Total plasticity, no code reuse

• PBD: programmer assembles rigid macros

◦ No plasticity, good code reuse

• DbI: programmer molds macros that

communicate with, and adapt to, one another

◦ Good plasticity, good code reuse
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• DbI Input

◦ Introspect types: “What are your

methods?”

◦ Variant: “Do you support method xyz?”

• DbI Processing

◦ Arbitrary compile-time evaluation

• DbI Output

◦ Generate arbitrary code



How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input



How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .



How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing



How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

◦ CTFE, static if, . . .



How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

◦ CTFE, static if, . . .

• DbI Output



How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

◦ CTFE, static if, . . .

• DbI Output

◦ template expansion, mixin, . . .



Optional Interfaces
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Optional Interfaces
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• A DbI component typically prescribes:

◦ nr required primitives (may be 0)

◦ no optional primitives

• Introspection queries for optionals

• What’s missing as important as what’s

present

• Up to 2no possible interfaces, in compact

form!



Optional Interfaces: Aftermath
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• Linear code for exponential behaviors

◦ Includes state variations, too

◦ static if the “magic design fork”

• No penalty for fat interfaces

• Graceful degradation

◦ Old: Less capable components ⇒ errors

◦ New: Less capable components ⇒

reduced features
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Each use of static if

doubles the design

space covered



Realized Designs
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• std.experimental.allocator: unbounded

allocator designs in 12 KLOC

◦ jemalloc: 1 allocator in 45 KLOC

• Collections: see talk by Eduard Stăniloiu

• std.experimental.checkedint: now



Checked Integrals
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• +, +=, -, -=, ++, --, *, *= may lose information

• Division by zero in /, /=

• -x.min negative for all signed types

• -1 == uint.max, -1 > 2u

• That’s pretty much it!



Possible Designs (1/2)
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• Options that come at a runtime cost

◦ Integrate in the programming language

◦ Do away with fixed-size arithmetic

altogether

• Have the programmer insert tests

appropriately

◦ For an appropriate definition of

“appropriately”

◦ Bulky, difficult to follow, fragile



Possible Designs (2/2)
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• Designate “checked integral” types

• Hook all operations and insert checks

• User replaces primitive types with these

◦ Selectively depending on safety/speed

tradeoff

• Requires user-defined operator overloading



Design Challenges
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• What gets checked: overflows? div0?

negation? mixed-sign comparisons?

conversions? some of the above—which?

• On violation: warn? abort? throw? log?

fix/approximate?

• Type system integration: statically disallow

some operators/conversions?

• Make it efficient (not easy!)

• Make it small

◦ Proportional response

◦ Not rocket surgery after all



Meta Design Challenges
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• No trouble to implement any given behavior

• Much more difficult to allow behaviors that

are as of yet unspecified

• Scaffolding scales poorly with behaviors

• “Sticker shock” of generic libraries

◦ “You mean I need to use this 5 KLOC

library coming with 20 pages of

documentation to check a few overflows?”



Baselines (1/2)
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• Mozilla’s CheckedInt for C++

◦ 0.8 KLOC (without docs, unittests)

◦ Inefficient layout (“valid” bit with the

integral)

◦ Enforcement onus on user code

◦ No configurability

◦ Inefficient approach (checks separated

from operations)

• Microsoft’s SafeInt for C++

◦ 7 KLOC

◦ Lavish documentation

◦ The Death Star of checked integers



Baselines (2/2)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 26 / 45

• safe_numerics for C++ by Robert Ramey

◦ Policy-based Design in 5 KLOC (+ 5 KLOC

tests)

◦ Requires 6 Boost libs

• checkedint for D by T. S. Bockman

◦ PbD in 5 KLOC, including docs



std.experimental.checkedint size
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• 3 KLOC (code + unittests + documentation)

• Code: 1200 LOC

• Tests: 900 LOC

• Documentation: 900 LOC

• Speed: comparable to hand-inserted checks



Overall Design
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• “Shell with hooks” approach

• Shell: high-level language integration

• Hook: optional intercepts of ops/events

• Default hook: just abort on anything fishy

struct Checked(T, Hook = Abort) if (isIntegral!T) {

private T payload;

Hook hook;

...

}



Stateless hook? No problem!
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struct Checked(T, Hook = Abort) if (isIntegral!T) {

private T payload;

static if (stateSize!Hook > 0) Hook hook;

else alias hook = Hook;

...

}



Default should be configurable
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• Good for “integers with NaN”

struct Checked(T, Hook = Abort) {

static if (hasMember!(Hook, "defaultValue"))

private T payload = Hook.defaultValue!T;

else

private T payload;

static if (stateSize!Hook > 0) Hook hook;

else alias hook = Hook;

...

}



The Shell
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• Factors all commonalities

• Handles qualifiers

• Drives hooks

• Type system integration (bool, float etc)

• Composition mediation

• Not needed/appropriate for all designs



Graceful Degradation
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• Traditionally: insufficient capabilities ⇒ error

• New: Insufficient interface ⇒ less capabilities

Checked!(int, void) x;

// x behaves like vanilla int

...

• Useful for:

◦ Validate approach through “dry run”

◦ Control design through versioning

◦ Cover a larger design space!



Example
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ref Checked opUnary(string op)() return

if (op == "++" || op == "--") {

static if (hasMember!(Hook, "hookOpUnary"))

hook.hookOpUnary!op(payload);

...



Example (cont’d)
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else static if (hasMember!(Hook, "onOverflow")) {

static if (op == "++") {

if (payload == max.payload)

payload = hook.onOverflow!"++"(payload);

else

++payload;

} else {

if (payload == min.payload)

payload = hook.onOverflow!"--"(payload);

else

--payload;

}

} else

mixin(op ~ "payload;");

return this;

}



Defined Hook Primitives
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• Statics: defaultValue, min, max

• Intercept/override: hookOpCast,

hookOpEquals, hookOpCmp, hookOpUnary,

hookOpBinary, hookOpBinaryRight,

hookOpOpAssign

• Event handling: onBadCast, onOverflow,

onLowerBound, onUpperBound



Defined Hooks
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• Abort

• Throw

• Warn: output issues to stderr

• ProperCompare: fix comparisons on the fly

• WithNaN: Reserve “not a number” value

• Saturate: sticky saturation instead of

overflowing

• Your own

◦ Average length: 50 lines



Hook Example
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• No Pesky Comparisons

struct NoPeskyCmps {

static int hookOpCmp(Lhs, Rhs)(Lhs lhs, Rhs rhs) {

const result = (lhs > rhs) - (lhs < rhs);

if (result > 0 && lhs < 0 && rhs >= 0 ||

result < 0 && lhs >= 0 && rhs < 0) {

assert(0, "Mixed-signed comparison failed.");

}

return result;

}

alias MyInt = Checked!(int, NoPeskyCmps);



Flexibility
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• No Pesky Comparisons—EVAR!

struct NoPeskyCmpsEver {

static int hookOpCmp(Lhs, Rhs)(Lhs lhs, Rhs rhs) {

static if (lhs.min < 0 && rhs.min >= 0 &&

lhs.max < rhs.max || rhs.min < 0 &&

lhs.min >= 0 && rhs.max < lhs.max) {

static assert(0, "Mixed-sign comparison of " ~

Lhs.stringof ~ " and " ~ Rhs.stringof ~

" disallowed. Cast one of the operands.");

}

}

return (lhs > rhs) - (lhs < rhs);

}

alias MyInt = Checked!(int, NoPeskyCmpsEver);



Composition

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 39 / 45



Reflexive Composition
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• Traditionally: Checked works with integrals

struct Checked(T, Hook = Abort)

if (isIntegral!T) {

...

}

• New: Checked works with integrals or itself

struct Checked(T, Hook = Abort)

if (isIntegral!T || is(T == Checked!(U, H), U, H)) {

...

}

• Unique opportunities, but also challenges



Reflexive Composition: Examples
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• “The Pit of Success”

• Checked!(Checked!int, ProperCompare)

◦ Fix comparisons, abort on everything else

• Checked!(Checked!(int, ProperCompare), WithNaN)

◦ Has NaN, fix comparison for non-NaNs



Nonworking Combos
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• Nonsensical:

◦ Abort, Throw, Warn

◦ Abort/Throw before ProperCompare,

WithNaN, Saturate

• Inefficient/ambiguous:

◦ Warn, then fix comparisons:

Checked!(Checked!(int, ProperCompare), Warn)

◦ Fix comparisons, then warn for all others:

Checked!(Checked!(int, Warn), ProperCompare)

◦ Warn, then fix:

Checked!(Checked!(Checked!(int,

ProperCompare), Saturate), Warn)



Semi-Automated Composition
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• Saturate operations, abort on bad casts

struct MyHook {

alias

onBadCast = Abort.onBadCast,

onLowerBound = Saturate.onLowerBound,

onUpperBound = Saturate.onUpperBound,

onOverflow = Saturate.onOverflow,

hookOpEquals = Abort.hookOpEquals,

hookOpCmp = Abort.hookOpCmp;

}

alias MyInt = Checked!(int, MyHook);



Design by Introspection
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• Assembly with plastic, adaptable components

• Optional Interfaces

• Automatic/semi-automatic composition

• Exponential coverage with linear code

• Graceful degradation
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Destructionize!
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