
© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 1 / 45

Design by Introspection
DConf 2017

Andrei Alexandrescu, Ph.D.

2017-05-06

History

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 2 / 45

Design Patterns Recap

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 3 / 45

• Inspired by Christopher Alexander’s (actual)

architecture work

• Reusable solutions to reoccurring problems

within given contexts

• Heyday in early 2000s

• Overselling and rebuttals predictably followed

• Left a lasting influence on design

methodologies

Policy-Based Design

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 4 / 45

• Coined by “Modern C++ Design” in 2001

• Enjoys use in C++, D

• Inducted in Wikipedia’s “hall of fame” at

http://en.wikipedia.org/wiki/Programming_paradigm

(along with 75 others)

http://en.wikipedia.org/wiki/Programming_paradigm

Patterns & Policy-Based Design

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 5 / 45

• Approaches on the same core issue:

• Design elements reoccur in response to

typical problems

• Patterns: programmer is the generator

• Policy-Based Design: programmer controls

the generator

To Wit

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 6 / 45

“[...] the Design Patterns solution

is to turn the programmer into a

fancy macro processor.”

– Mark Dominus

Policy-Based Design (PBD)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 7 / 45

• Def: Assembling a design by mixing

components (policies) during compilation

• Nothing new:

◦ Interface-based programming

◦ Template Method pattern

• Yet:

◦ Compile-time assembly offers extra static

checking

◦ “Frictionless abstraction” makes PBD

suitable for good design of low-level

components

Segue to Policies

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 8 / 45

• Semi-automated “macro” preprocessing

+ Better software reuse

+ Excellent static checking

+ Ultimate efficiency in time and space

− Run-time rigid

− No graceful degradation

− Compile-time dependent

Typical Policy-Based Design

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 9 / 45

struct Widget(T, Prod, Error) {

private T _frob;

private Prod _producer;

private Error _errPolicy;

void doWork() {

... rely on implicit interfaces ...

}

}

Design by Introspection

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 10 / 45

Plenty of Room at the Bottom

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 11 / 45

“What would happen if we could

arrange the atoms one by one the

way we want them?”

– Richard P. Feynman

Core Idea

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 12 / 45

• Patterns: programmer “expands” mental

macros

◦ Total plasticity, no code reuse

• PBD: programmer assembles rigid macros

◦ No plasticity, good code reuse

• DbI: programmer molds macros that

communicate with, and adapt to, one another

◦ Good plasticity, good code reuse

DbI Prerequisites

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 13 / 45

• DbI Input

DbI Prerequisites

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 13 / 45

• DbI Input

◦ Introspect types: “What are your

methods?”

◦ Variant: “Do you support method xyz?”

DbI Prerequisites

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 13 / 45

• DbI Input

◦ Introspect types: “What are your

methods?”

◦ Variant: “Do you support method xyz?”

• DbI Processing

DbI Prerequisites

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 13 / 45

• DbI Input

◦ Introspect types: “What are your

methods?”

◦ Variant: “Do you support method xyz?”

• DbI Processing

◦ Arbitrary compile-time evaluation

DbI Prerequisites

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 13 / 45

• DbI Input

◦ Introspect types: “What are your

methods?”

◦ Variant: “Do you support method xyz?”

• DbI Processing

◦ Arbitrary compile-time evaluation

• DbI Output

DbI Prerequisites

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 13 / 45

• DbI Input

◦ Introspect types: “What are your

methods?”

◦ Variant: “Do you support method xyz?”

• DbI Processing

◦ Arbitrary compile-time evaluation

• DbI Output

◦ Generate arbitrary code

How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

◦ CTFE, static if, . . .

How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

◦ CTFE, static if, . . .

• DbI Output

How does D stack up?

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 14 / 45

• DbI Input

◦ tupleof, __traits, . . .

• DbI Processing

◦ CTFE, static if, . . .

• DbI Output

◦ template expansion, mixin, . . .

Optional Interfaces

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 15 / 45

Optional Interfaces

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 16 / 45

• A DbI component typically prescribes:

◦ nr required primitives (may be 0)

◦ no optional primitives

• Introspection queries for optionals

• What’s missing as important as what’s

present

• Up to 2no possible interfaces, in compact

form!

Optional Interfaces: Aftermath

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 17 / 45

• Linear code for exponential behaviors

◦ Includes state variations, too

◦ static if the “magic design fork”

• No penalty for fat interfaces

• Graceful degradation

◦ Old: Less capable components ⇒ errors

◦ New: Less capable components ⇒

reduced features

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 18 / 45

Each use of static if

doubles the design

space covered

Realized Designs

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 19 / 45

• std.experimental.allocator: unbounded

allocator designs in 12 KLOC

◦ jemalloc: 1 allocator in 45 KLOC

• Collections: see talk by Eduard Stăniloiu

• std.experimental.checkedint: now

Checked Integrals

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 20 / 45

• +, +=, -, -=, ++, --, *, *= may lose information

• Division by zero in /, /=

• -x.min negative for all signed types

• -1 == uint.max, -1 > 2u

• That’s pretty much it!

Possible Designs (1/2)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 21 / 45

• Options that come at a runtime cost

◦ Integrate in the programming language

◦ Do away with fixed-size arithmetic

altogether

• Have the programmer insert tests

appropriately

◦ For an appropriate definition of

“appropriately”

◦ Bulky, difficult to follow, fragile

Possible Designs (2/2)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 22 / 45

• Designate “checked integral” types

• Hook all operations and insert checks

• User replaces primitive types with these

◦ Selectively depending on safety/speed

tradeoff

• Requires user-defined operator overloading

Design Challenges

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 23 / 45

• What gets checked: overflows? div0?

negation? mixed-sign comparisons?

conversions? some of the above—which?

• On violation: warn? abort? throw? log?

fix/approximate?

• Type system integration: statically disallow

some operators/conversions?

• Make it efficient (not easy!)

• Make it small

◦ Proportional response

◦ Not rocket surgery after all

Meta Design Challenges

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 24 / 45

• No trouble to implement any given behavior

• Much more difficult to allow behaviors that

are as of yet unspecified

• Scaffolding scales poorly with behaviors

• “Sticker shock” of generic libraries

◦ “You mean I need to use this 5 KLOC

library coming with 20 pages of

documentation to check a few overflows?”

Baselines (1/2)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 25 / 45

• Mozilla’s CheckedInt for C++

◦ 0.8 KLOC (without docs, unittests)

◦ Inefficient layout (“valid” bit with the

integral)

◦ Enforcement onus on user code

◦ No configurability

◦ Inefficient approach (checks separated

from operations)

• Microsoft’s SafeInt for C++

◦ 7 KLOC

◦ Lavish documentation

◦ The Death Star of checked integers

Baselines (2/2)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 26 / 45

• safe_numerics for C++ by Robert Ramey

◦ Policy-based Design in 5 KLOC (+ 5 KLOC

tests)

◦ Requires 6 Boost libs

• checkedint for D by T. S. Bockman

◦ PbD in 5 KLOC, including docs

std.experimental.checkedint size

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 27 / 45

• 3 KLOC (code + unittests + documentation)

• Code: 1200 LOC

• Tests: 900 LOC

• Documentation: 900 LOC

• Speed: comparable to hand-inserted checks

Overall Design

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 28 / 45

• “Shell with hooks” approach

• Shell: high-level language integration

• Hook: optional intercepts of ops/events

• Default hook: just abort on anything fishy

struct Checked(T, Hook = Abort) if (isIntegral!T) {

private T payload;

Hook hook;

...

}

Stateless hook? No problem!

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 29 / 45

struct Checked(T, Hook = Abort) if (isIntegral!T) {

private T payload;

static if (stateSize!Hook > 0) Hook hook;

else alias hook = Hook;

...

}

Default should be configurable

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 30 / 45

• Good for “integers with NaN”

struct Checked(T, Hook = Abort) {

static if (hasMember!(Hook, "defaultValue"))

private T payload = Hook.defaultValue!T;

else

private T payload;

static if (stateSize!Hook > 0) Hook hook;

else alias hook = Hook;

...

}

The Shell

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 31 / 45

• Factors all commonalities

• Handles qualifiers

• Drives hooks

• Type system integration (bool, float etc)

• Composition mediation

• Not needed/appropriate for all designs

Graceful Degradation

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 32 / 45

• Traditionally: insufficient capabilities ⇒ error

• New: Insufficient interface ⇒ less capabilities

Checked!(int, void) x;

// x behaves like vanilla int

...

• Useful for:

◦ Validate approach through “dry run”

◦ Control design through versioning

◦ Cover a larger design space!

Example

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 33 / 45

ref Checked opUnary(string op)() return

if (op == "++" || op == "--") {

static if (hasMember!(Hook, "hookOpUnary"))

hook.hookOpUnary!op(payload);

...

Example (cont’d)

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 34 / 45

else static if (hasMember!(Hook, "onOverflow")) {

static if (op == "++") {

if (payload == max.payload)

payload = hook.onOverflow!"++"(payload);

else

++payload;

} else {

if (payload == min.payload)

payload = hook.onOverflow!"--"(payload);

else

--payload;

}

} else

mixin(op ~ "payload;");

return this;

}

Defined Hook Primitives

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 35 / 45

• Statics: defaultValue, min, max

• Intercept/override: hookOpCast,

hookOpEquals, hookOpCmp, hookOpUnary,

hookOpBinary, hookOpBinaryRight,

hookOpOpAssign

• Event handling: onBadCast, onOverflow,

onLowerBound, onUpperBound

Defined Hooks

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 36 / 45

• Abort

• Throw

• Warn: output issues to stderr

• ProperCompare: fix comparisons on the fly

• WithNaN: Reserve “not a number” value

• Saturate: sticky saturation instead of

overflowing

• Your own

◦ Average length: 50 lines

Hook Example

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 37 / 45

• No Pesky Comparisons

struct NoPeskyCmps {

static int hookOpCmp(Lhs, Rhs)(Lhs lhs, Rhs rhs) {

const result = (lhs > rhs) - (lhs < rhs);

if (result > 0 && lhs < 0 && rhs >= 0 ||

result < 0 && lhs >= 0 && rhs < 0) {

assert(0, "Mixed-signed comparison failed.");

}

return result;

}

alias MyInt = Checked!(int, NoPeskyCmps);

Flexibility

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 38 / 45

• No Pesky Comparisons—EVAR!

struct NoPeskyCmpsEver {

static int hookOpCmp(Lhs, Rhs)(Lhs lhs, Rhs rhs) {

static if (lhs.min < 0 && rhs.min >= 0 &&

lhs.max < rhs.max || rhs.min < 0 &&

lhs.min >= 0 && rhs.max < lhs.max) {

static assert(0, "Mixed-sign comparison of " ~

Lhs.stringof ~ " and " ~ Rhs.stringof ~

" disallowed. Cast one of the operands.");

}

}

return (lhs > rhs) - (lhs < rhs);

}

alias MyInt = Checked!(int, NoPeskyCmpsEver);

Composition

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 39 / 45

Reflexive Composition

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 40 / 45

• Traditionally: Checked works with integrals

struct Checked(T, Hook = Abort)

if (isIntegral!T) {

...

}

• New: Checked works with integrals or itself

struct Checked(T, Hook = Abort)

if (isIntegral!T || is(T == Checked!(U, H), U, H)) {

...

}

• Unique opportunities, but also challenges

Reflexive Composition: Examples

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 41 / 45

• “The Pit of Success”

• Checked!(Checked!int, ProperCompare)

◦ Fix comparisons, abort on everything else

• Checked!(Checked!(int, ProperCompare), WithNaN)

◦ Has NaN, fix comparison for non-NaNs

Nonworking Combos

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 42 / 45

• Nonsensical:

◦ Abort, Throw, Warn

◦ Abort/Throw before ProperCompare,

WithNaN, Saturate

• Inefficient/ambiguous:

◦ Warn, then fix comparisons:

Checked!(Checked!(int, ProperCompare), Warn)

◦ Fix comparisons, then warn for all others:

Checked!(Checked!(int, Warn), ProperCompare)

◦ Warn, then fix:

Checked!(Checked!(Checked!(int,

ProperCompare), Saturate), Warn)

Semi-Automated Composition

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 43 / 45

• Saturate operations, abort on bad casts

struct MyHook {

alias

onBadCast = Abort.onBadCast,

onLowerBound = Saturate.onLowerBound,

onUpperBound = Saturate.onUpperBound,

onOverflow = Saturate.onOverflow,

hookOpEquals = Abort.hookOpEquals,

hookOpCmp = Abort.hookOpCmp;

}

alias MyInt = Checked!(int, MyHook);

Design by Introspection

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 44 / 45

• Assembly with plastic, adaptable components

• Optional Interfaces

• Automatic/semi-automatic composition

• Exponential coverage with linear code

• Graceful degradation

© 2017– Andrei Alexandrescu, Ph.D. Do not redistribute. 45 / 45

Destructionize!

	History
	Design Patterns Recap
	Policy-Based Design
	Patterns & Policy-Based Design
	To Wit
	Policy-Based Design (PBD)
	Segue to Policies
	Typical Policy-Based Design

	Design by Introspection
	Plenty of Room at the Bottom
	Core Idea
	DbI Prerequisites
	How does D stack up?

	Optional Interfaces
	Optional Interfaces
	Optional Interfaces: Aftermath
	
	Realized Designs
	Checked Integrals
	Possible Designs (1/2)
	Possible Designs (2/2)
	Design Challenges
	Meta Design Challenges
	Baselines (1/2)
	Baselines (2/2)
	`11`=12lstlanguage=Dstd.experimental.checkedint size
	Overall Design
	Stateless hook? No problem!
	Default should be configurable
	The Shell
	Graceful Degradation
	Example
	Example (cont'd)
	Defined Hook Primitives
	Defined Hooks
	Hook Example
	Flexibility

	Composition
	Reflexive Composition
	Reflexive Composition: Examples
	Nonworking Combos
	Semi-Automated Composition
	Design by Introspection
	

