Memory Safety
and the
D Programming Language

by Walter Bright

dlang.org

What's Hot

1970s

— Structured Programming
1980s

- User Friendly

1990s

- Object Oriented Programming
2000s

- Generic/Meta Programming

And Now...

SECURITY

By Subscribe to RSS

Kevin Mitnick Security Awareness Training 2016 (e [u—",
Because old school Security Awareness Training doesn't hack it anymore. KnewBe4

Join me on Facebook

BE

KrebsonSecurity

In-depth security news and investigation

21 Hacked Cameras, DVRs Powered Today’s
Massive Internet Outage

A massive and sustained Internet attack that has caused outages and network
congestion today for a large number of Web sites was launched with the help of hacked
“Internet of Things” (IoT) devices, such as CCTV video cameras and digital video recorders,
new data suggests.

Earlier today cyber criminals began training their attack cannons on Dyn, an Internet
infrastructure company that provides critical technology services to some of the Internet’s Regain Control of Your
top destinations. The attack began creating problems for Internet users reaching an array of Security Operations

sites, including Twitter, Amazon, Tumblr, Reddit, Spotify and Netflix.

My New Book!

United States
of America

NATION

NEW YORK TIMES BESTSELLER

Bahamas

México : i Turks and Caicos
= “=__Islands
) Cavmanisiands i
A depiction of the outages caused by today’s attacks on Dyn, an Internet infrastructure company. Source:

Downdetector.com.

THE INSIDE STORY OF

At first, it was unclear who or what was behind the attack on Dyn. But over the past few
L . . ey ORGANIZED CYBERCRIME—FROM GLOBAL
hours, at least one computer security firm has come out saying the attack involved Mirai, EPIDEMIC TO YOUR FRONT DOOR

the same malware strain that was used in the record 620 Gpbs attack on my site last month.

At the end September 2016, the hacker responsible for creating the Mirai malware released B R | A N K R E B S

the source code for it, effectively letting anyone build their own attack army using Mirai.

Mirai scours the Web for IoT devices protected by little more than factory-default usernames A New York Times Bestseller!
and passwords, and then enlists the devices in attacks that hurl junk traffic at an online
target until it can no longer accommodate legitimate visitors or users.

Buy at Amazon Qg

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage

Prediction

Memory safety will become a requirement for
programming languages

Memory Safety

“a concern In software development that aims to
avoid software bugs that cause security
vulnerabillities dealing with random-access
memory (RAM) access, such as buffer overflows
and dangling pointers”

https://en.wikipedia.org/wiki/Memory_Safety

a.k.a.

Pointers Gone Wild!

The Usual Suspects

Buffer overflow
Pointer arithmetic
Uninitialized pointers

Casting
Misaligned pointers
Pointers to expired stack frames

Dangling pointers

Buffer Overflow

INt[10] a;
for (size t1=0;1<=10; ++i)
ali] = ...;

Solution

« arrays do not decay to pointers
— array dimension is carried with it
* runtime array bounds checking

Arrays Look Like

struct Array

{

size_t length;
T* ptr;
}

Pointer Arithmetic

INt[10] a;

Int* p = &al0];

for (size t1=0;1<=10; ++1)
p[i] = ...;

Lost the array bounds checking

Solution

Pointer arithmetic 1s not allowed

Uninitialized Pointers

Solution

Default initialize to null

Uninitialized Pointers 2

struct S

o
INt 1;
char* p;
this(int x) { this.i = X; }

}

S s =5(3);
*s.p = ...; [l error, p not initialized

Same Solution

Default initialize the fields

No Initialization

S s = void;

(But not allowed in @safe code)

Casting

Int* p = cast(int*) 1234, // error
int i = cast(int) p; /I ok

Unions

union U

.
INt* p;
Nt I
]
U u;

u.l = 1234,
Int* p = u.p; // error

Size Casts

char* pc;
byte* pb = cast(byte*) pc; // ok
Int* pi = cast(int*) pc; // nope

Misaligned Pointers

struct S

{
align (1):
byte b;
Int I,

}

SS;
Int* p = &s.I; // error

Pointers To Expired Stack Frames

Int* foo()
U
Nt I;
return &iI; // error

}

Easily Defeated

Int* foo() QU
o
Int i; 8
Int* p = &, gy
return p;

}

Using ref Instead

 ref Is a restricted pointer

— can only use ref for parameters/returns
- no arithmetic
- NO escape

ref int foo()

v
Int i;
ref int p =1; // not allowed!
return p;

}

But Need Identity Function

ref int foo(ref int 1)

{

return I

}

Leading To

ref int foo(ref int 1)

{

return I

}

ref int bar()
{

Int I,
return foo(i); // uh-oh!

}

Introducing return ref

ref int foo(return ref int 1)

{
}

ref int bar()
{

return I

Int I;
Int | = foo(i); // ok
return foo(1); // error

}

Back To Pointers

Int* foo(int* 1)

{

return I;

}

Int* bar()
vt
Int i;
return foo(&l); // boom!

}

Introducing scope

void abc(int*);

Int* q; \ \
Int* fOO(SCOpe Int* P, INt** pp) é\/‘ I\ R
{ ,
abc(p); /I error \
q=p; [/ nope
*pp = p; // nice try \

return p; // no way

Locals Can Be scope

void foo(scope int* p)

{
scope Int* g = p; // ok
Int* s = p; // ok, scope Is inferred

}

Int j;

scope Int* p;

INt I;

0 = &]; I/ ok

0 = &lI; // error

D=Cc? &l :&; /Il error

More Inference

void foo()(int* p)

{
*p — 3,
// 'p" Is Inferred as scope

}

Lambdas too

return scope Like return ref

int* foo(return scope int* p) {
return p;

}

Int* bar(int* q) {
INt I;
*foo(&l) = 3; // ok
return foo(q); // ok
return foo(&il); // error

}

What About

e dynamic arrays

- ptr / length pair
» delegates

— ptr / funcptr pair
* this

— ptr or ref

Dangling Pointers

Int* p = cast(int*) malloc(5 * int.sizeof);
frlée(p);
*p =3;// Boom!

“Oh | don't think there's anything in that black bag for me.” — Dorothy

Containers

 Use RAIl (scoped destruction)
* prevent general escape of pointers
* use return scope and return ref

But still some work to be done

Conclusion

wild pointers can be corralled

simple annotations are possible

many (most?) annotations can be inferred
system code still allowed

You'll get used to it.

http://dlangcomicstrips.tumblr.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

