
What’s GNU With You?

DConf 2017 Iain Buclaw

GNU Binary Utilities

Year in Digest

Sep/2014 - GNU libiberty (-liberty) supports D2 demangling
Considered feature complete (nm phobos_unittester)

All programs that use demangling part of library D aware.
addr2line -C dlang
nm -C dlang
objdump -C dlang
c++filt -s dlang
ld --demangle=dlang (or gold)
gprof --demangle=dlang
gdb (automatically used if DW_LANG_D)

What’s happened since?

Oct/2014: Removed use of strtold, no support for many platforms
(Solaris 9)

May/2015: Removed use of strtod, some don’t accept hexadecimals
(Solaris 9 ... again)

Aug/2015: Add return parameters and attributes, cent/ucent types

Jan/2016: Add extern(Objective-C)

Apr/2017: Add scope attributes

Present and Future

D name mangling ABI now better documented (Mostly Rainer)

I’ve also updated the grammer (sic) to not need the special
token QFT. This now reveals the conflict for ’V’ and another
one on ’M’. -- Rainer

Support for mangle back references (Major ABI change)

Support multiple format styles (types, params, attributes)

Work may become part of core.demangle

GNU Project Debugger

GNU Project Debugger

GNU Project Debugger

GNU Project Debugger

Year in Digest

Jan/2014: D language support given a revamp
Aware of ‘D main’ (start)
Primitive types made GDB built-ins
Hooked in new demangling capabilities

Feb/2014: New D expression parser (YACC)
Expressions match D grammar until PrimaryExpression
Types grammar incomplete
Recognize many common keywords
Parse integer and floating pointer notations
Literals (true, false, null)

What’s happened since?

Aug/2015: Non-local symbol lookup
DW_TAG_imported_module
DW_TAG_imported_declaration

Aug/2015: Switched to eagerly resolving symbols (in yylex)

Oct/2015: Started adding simple property expressions (.sizeof)

Feb/2016: Various bug fixes

Mar/2017: Some more small bug fixes (just in time for gdb-8.0)

Where’s the rest?

<andrew>
(gdb) p url
$1 = "http://www.google.com/path"
(gdb) p url[0]
Invalid binary operation specified.
(gdb) p *url
Structure has no component named operator*.
(gdb) p *(url.ptr)
Internal error: ‘this’ is not an aggregate
(gdb) ptype url
type = struct _Array_char {

unsigned long length;
char *ptr;

}
(gdb) p url[0 .. 1]
cannot take slice of non-array
<ibuclaw> Please raise bugs though for any missing niceties. :)
<andrew> ok...if i must :P
<ibuclaw> You might have a point there with better handling of dynamic arrays
<andrew> you think url[0] should work?
<ibuclaw> Yes, and url[x..y]
<ibuclaw> The debugger should at least support most simple built-in operations.
<andrew> i have opened issues for [n] and [n .. o]

Where’s the rest?

<ibuclaw> Apparently I implemented D array slicing back in 2014.
<andrew> and someone broke it?
<ibuclaw> No
<ibuclaw> I never committed it

Near or Far Future

Support printing D types (module, ulong, __vector)

Finish off the D grammar

Support all operations that don’t have external dependencies
Array operations
typeid()
Special casts (delegates, arrays, dynamic_cast)

Function call overloading

On-demand D compilation and code injection (one can dream...)

GNU D Compiler

First of all, thank you for your tremendous work on GDC!
Fellow developers and me were also pretty stunned by you
maintaining a quite large amount of different GDC versions in
parallel without a huge team - that’s some impressive work!
-- Matthias, Debian Maintainer (appstream, dustmite, vibe.d)

What is the thing that’s blocking GDCs GCC inclusion? Just
manpower? It would probably be awesome to have a summary
blogpost or similar on the state of GDC, that could potentially
also attract volunteers.
-- Matthias, Debian Maintainer (appstream, dustmite, vibe.d)

A Brief History

GCC Integration

Oct/2011: Digital Mars assigns past, present and future changes to
the GNU D Compiler.

Oct/2011: First submission attempt - abstract.

Aug/2012: Second submission attempt - technical

GCC Integration

Positive:
In general we welcome contributions like this. The biggest problem
in the past has always been continued maintainership.
There is a list of most of the requirements for a new frontend at
http://gcc.gnu.org/onlinedocs/gccint/Front-End.html.
The merge of Go could be a good example to follow. It was finally
committed here, so be patient and persevere.

Negative:
Does D really require a new calling convention?
Also does it really require naked support?
Some parts are duplication of other GCC frontends - think about
refactoring to share it.
All significant contributors to need to have papers on file at FSF.
Original GDC author MIA since 2007.

GCC Integration

Negative:
How did you test this? You include poisoned headers
Lacking testsuite (DejaGNU)
Project directories incorrectly structured
Many functions have no leading comment
GNU coding standards are not followed either
DMD frontend missing copyright notices in many sources
DMD frontend has notice in many files:

This file has been patched from the original DMD
distribution to work with the GDC compiler

DMD license is GPLv2 - we need an explicit notice (approved by the
copyright holder) saying that *any later version* may be used
What is d/d-asm-i386.h for? It looks like i386 is a special case
throughout the frontend
Why is there support for prior versions of GCC?
Macros, macros, everywhere (V1, V2) - why?
Target and host specific code, everywhere - why?

What happened to the effort to merge GNU D? The discussion
thread last October seemed to end without any resolution. I
wanted to make sure that the contribution process had not
discouraged you. We would like to include GDC when it is
ready.
-- David, GCC Maintainer (AIX, SPU, RS6000 ports)

Battle Plan

Remove D1 support

Only support one GCC version - trunk/master
GCC releases should go into separate branches.

Drop everything in the language that is tied to a target.
D inline assembler
D calling convention

Make no assumptions based on target
Ask: Do I need to prefix symbols?
Not: Am I compiling for OSX?

DMD Frontend must be shared/unmodified

Developments

Jan/2014:
Addressed points raised on D frontend with the core community
Introduced ’Target’ hook to remove many GDC-specific changes
GCC sources switched to C++, many problems are now irrelevant
Got very close to a “common” frontend with DMD

Feb/2014: DMD frontend replaces glue interfaces with visitors
DMD migrated in straight-forward conversions

Sep/2014: Received patches via private email to migrate GDC

I had another idea in mind...

The Visitor Problem

Old Interface:
DMD

ctype ::toCtype
Symbol ::toSymbol
elem ::toElem
dt_t ::toDt
IRState ::toIR
void ::toObjFile

GDC
ctype ::toCtype (typedef tree)
Symbol ::toSymbol
elem ::toElem (typedef tree)
dt_t ::toDt (typedef tree)
IRState ::toIR
void ::toObjFile

The Visitor Problem

New Interface:
DMD

ctype ToCtypeVisitor
Symbol ToSymbol
elem ToElemVisitor
dt_t xxxToDt
IRState S2irVisitor
void ToObjFile

GDC
tree TypeVisitor
tree get_symbol_decl ()
tree ExprVisitor
[deleted]
void IRVisitor
void DeclVisitor

The Visitor Problem

Deciding to go down this route was not a straightforward
change. More a total rewrite of the GDC internals.

More Developments

Aug/2015: Half of old interfaces had been removed or upgraded
Types
Expressions
Statements

Aug/2015: DMD replaces C++ frontend with D
Introduced many interoperability regressions
As of writing, most are solved - still many unknowns

More Developments

Jun/2016: Updated to DMD 2.068.2 FE branch

Aug/2016: Phobos and Druntime built as shared library
Passing unittests and testsuite.

Oct/2016: Original GDC author assigns past changes to FSF
Legally, we are now unblocked!

Dec/2016: Scaffolding for old glue interface being torn down.
Remove stubs for Symbol, IRState

The DDMD Problem

DMD itself is moving along at a fast speed and neither LDC or GDC
are keeping up

Regressions are noticed only after a release - makes having a
“vanilla” frontend impossible

There are upstream fixes to remove need for frontend changes, but
only in D implementation

Some have dependencies on other changes too

At some point GDC should switch to DDMD frontend
Likely many changes that affect codegen pass
Meaning maintain two branches, keeping both in sync!

Can’t go on updating once every release
Need a “stable” target to base GDC on

Even More Development

Dec/2016: Sync with last C++ version of 2.069-development
Merge C++ headers with upstream/stable
Backport fixes and features that are related

extern(C++, struct)
Fix bug 33/34
Support DIP25/DIP1000

Feb/2017: Backport DMD regression fixes from all versions up to
2.071.2

Mar/2017: Updated Phobos to 2.071.2

Apr/2017: Headers in sync with DMD stable

Current Status

GDC now in freeze for documentation/refactor mode

Fixing the coding style once and for all

Documenting every single function - referencing D spec where
applicable

Grouping common codegen routines into separate files

GCC-8 stage1 opened (20th April 2017)
GCC-7 release (due 2nd May 2017)

While Submission is Happening

More extensive documentation to come.
The gcc.builtins module
GDC compiler extensions (extended assembler)
Predefined version identifiers used by GDC
Configure time options
Build and bundle in documentation for Phobos library
Interoperability with C/C++ (maybe)

Improve our Platform and Architecture support

Build up a testing infrastructure (ARMv7, ARMv8, x86)

Hitchhikers Guide to Porting GDC

And That’s It!

