
DConf 2017 Abstraction Cost and Optimization - Johan Engelen 1

Abstraction Cost and Optimization

Johan Engelen

LDC team

https://johanengelen.github.io

https://johanengelen.github.io/

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 2

Outline

● Optimization and “abstraction cost”
– Cost of a function call

● Measuring performance
– common pitfall: compiler is given too much info

● Live code examples
– Inspired by Jason Turner's CppCon 2016 talk
– D → assembly

Feel free to interrupt me any time for questions or
comments

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 3

Optimization

● Code transformations
● Reason about code
● What does the language specification say?

void foo()
{
 int a = 1;
}

void foo()
{
}

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 4

Abstraction cost

● Optimization = generally removes abstraction artifacts
– Inlining = remove function call (removes function “abstraction”)

● Abstraction cost = (performance with abstraction)
 minus (performance without)

● Zero-cost abstraction = identical code after optimization
● Possible to have negative cost?

– Yes: templated functions
● Cost may depend on details

– What is the cost of a function call?

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 5

Cost of a function call

● The cost depends on the callee
– Is the callee inlinable?
– How many parameters does the callee take?

● Inlined?
– Yes: zero cost
– No: cost of call itself

 plus cost of parameter passing

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 6

Cost of a function call (2)

● Performance depends on the size of code (amount of
instructions), because of memory load and caching

● Inlining of rarely executed calls is may be bad for performance
– Note: the inlined code may be smaller than the call itself

● Future optimization? “outlining” of rarely executed code

if (almost_never_true) {
 f1(); // inlining = perhaps bad
} else {
 f2(); // inlining = perhaps good
}

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 7

Compilers

● DMD, GDC, LDC, SDC, …
– Compile-time performance: DMD
– Run-time performance: GDC, LDC, SDC
– This talk: LDC

● LDC does not inline functions from another module
– It doesn't ?!
– -enable-cross-module-inlining

– Templates
– Link-time optimization (LTO)

● Be aware that performance of different Phobos/druntime
versions may vary a lot

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 8

Measurement

● To know the performance of a piece of code, there is only one
way: measurement
– Obtaining good measurements is far from trivial!

● To obtain a deeper understanding: study compiler output
– LLVM IR (-output-ll): easier to understand why optimization

does/doesn't happen, but can't see result of register allocation and
instruction selection

– assembly (-output-s): actual instructions executed by the CPU

● In this talk: yes, we are going to discuss performance without
measuring :-)

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 9

Common pitfall

● Compiler is given too much information!
– the input data
– the number of loop iterations
– the exact type of a polymorphic object
– the body of a function
– the alignment of data
– …

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 10

https://d.godbolt.org

● Matt Godbolt's Compiler Explorer
– Matt's blog: https://xania.org/

● Online compilation of D code to assembly
● Write code on the left, see the assembly output

on the right
● Easy to try different compilers and compile flags
● Go visit the page and tinker with the code during

this talk!

https://d.godbolt.org/
https://xania.org/

DConf 2017 Abstraction Cost and Optimization - Johan Engelen 11

Final remarks...

● If you want to improve the performance of your code
– Start by measuring, avoid the pitfalls
– Analyze compiler output to find out what can be improved

● It pays off to learn LLVM IR, it's much easier to read than assembly

● There is a lot of room left for improvements, a few ideas:
– Improve devirtualization (a membercall clobbers the vptr? come on!)
– Memory allocations, elide or turn them into stack allocs (LDC already has

GC-->stack but needs improvement)
– Cross module inlining, or just use LTO?

Ship LDC with LTO Phobos/druntime!
– pure ? nothrow ? immutable ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

