
Cryptography in D

Amaury SÉCHET
@deadalnix

1

Wikipedia
Cryptography or
cryptology is the practice
and study of techniques
for
in the presence of third
parties called .

secure communication

adversaries

Myself
Cryptography is a set of
techniques ensuring the
confidentiality,
authenticity and integrity
of messages.

2

https://en.wikipedia.org/wiki/Secure_communication
https://en.wikipedia.org/wiki/Adversary_%28cryptography%29

BobAlice

3

WalterAndrei

4

WalterAndrei

Confidentiality

Nice...

5

Walter

Authenticity

Hey Walter,
Andrei here...

6

WalterAndrei

Integrity

I hope Walter
will believe it...

7

Cryptography

8

Symetric
Participants share a secret.

Use the shared secret to
ensure confidentiality,
authenticity and
integrity.

Asymetric
Participants have a secret
private key and a shared
public key.

Use private key to generate
proofs which can be
verified using the public
key.

9

Information wants to be
FREE

John phoned a clinic doing
paternity test and then a
divorce lawyer.

We don't know what was
said...

Use a secret usually known
as "key".

The secret must be:

Small.
Maximally entropic.
Ensure the secret is
reusable.
Protected against side
channel leaks.

10

Anything secret is part of
your key
Any secret algorithm is part
of the key.

Use public algorithms.

Using a secret algorithm is
known as security by
obscurity.

"Anyone, from the most
clueless amateur to the
best cryptographer, can
create an algorithm that he
himself can't break."

Bruce Schneier

Use peer reviewed
algorithms.

11

Integrity

12

WalterAndrei

Integrity

I hope Walter
will believe it...

13

Hash functions

14

Definition
A hash function is any

 that can be used
to map of arbitrary
size to data of fixed size.

function
data

In crypto ?
A cryptographic hash
function is a special class
of that has
certain properties which
make it suitable for use in

.

hash function

cryptography

Thanks wikipedia....

15

https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Data_%28computing%29
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cryptography

Confusion
It is not possible to get
information about the
secret key from the output.

It isn't possible to deduce
anything related to the
input from the output.

Diffusion
Changing the input even
slightly drastically changes
the output.

One bit flip in the input will
flip half the bit of the
output on average.

16

Collision
It must be hard to find 2
inputs sharing the same
hash.

Because of the
anniversary paradox it
takes 2 trials on average
to find a collision.

n/2

Pre-image
It must be hard, given a
hash, to find an input that
produces this hash.

It takes 2 trials on
average to find a pre-
image.

n-1

17

Exciting
80 bits security
MD5
SHA1

Boring
128 bits security
SHA256
SHA3

18

D hash function API

struct Hasher {
 // Initialize the hasher
 void start();

 // Hash some data
 void put(scope const(ubyte)[] data);

 // Get the hash
 ubyte[N] finish();
}

19

Hash function: SHA256
Internal state of 32B.
Process message by
blocks of 64B.
Each block is mixed
with internal state using
ARX operations.
Last round use a special
padding to make sure
the last block is 64B.

struct SHA256 {
 uint[8] state = [
 0x6a09e667, 0xbb67ae85,
 0x3c6ef372, 0xa54ff53a,
 0x510e527f, 0x9b05688c,
 0x1f83d9ab, 0x5be0cd19,
];

 ubyte[64] buffer;
 ulong byteCount;

 void start() {
 this = typeof(this).init;
 }

 void put(...) { ... }
 ubyte[32] finish() { ... }
}

20

Hash function: SHA256
struct SHA256 {
 uint[8] state;
 ubyte[64] buffer;
 ulong byteCount;

 void start() { ... }
 ubyte[32] finish() { ... }

 void put(const(ubyte)[] input) {
 auto byteIndex = byteCount % 64;

 // If we can fill the buffer, do one round.
 if (byteIndex && ((byteIndex + input.length) >= 64)) {
 // [...]
 }

 // Now we don't need to bufferise.
 while (input.length >= 64) {
 assert(byteIndex == 0, "unexpected buffer position");
 transform(*(cast(ubyte[64]*) input.ptr));
 input = input[64 .. $];
 byteCount += 64;
 }

 // Put the remaining bytes in the buffer.
 if (input.length > 0) {
 memcpy(buffer.ptr + byteIndex, input.ptr, input.length);
 byteCount += input.length;
 }
 }

private:
 void transform(ref ubyte[64] chunk) { ... }
}

21

Hash function: SHA256
struct SHA256 {
 uint[8] state;
 ubyte[64] buffer;
 ulong byteCount;

 void start() { ... }
 void put(const(ubyte)[] input) { ... }

 ubyte[32] finish() {
 auto count = byteCount;

 // We want to pad up to 56 bytes mod 64.
 auto paddingSize = 64 - ((byteCount + 8) % 64);
 put(Padding[0 .. paddingSize]);

 // SHA-256 append the size in bits to the last round.
 buffer.byUlong[7] = bswap(count * 8);
 transform(buffer);

 uint[8] ret;
 foreach (i; 0 .. 8) {
 ret[i] = bswap(state[i]);
 }

 // Same player play again.
 start();
 return *(cast(ubyte[32]*) &ret);
 }

private:
 void transform(ref ubyte[64] chunk) { ... }
}

22

Hash function: SHA256
struct SHA256 {
 uint[8] state;
 ubyte[64] buffer;
 ulong byteCount;

 void start() { ... }
 void put(const(ubyte)[] input) { ... }
 ubyte[32] finish() { ... }

private:
 void transform(ref ubyte[64] chunk) {
 auto s = state;
 uint[16] w;

 foreach (i; 0 .. 16) {
 Round(
 s[(0 - i) & 0x07],
 s[(1 - i) & 0x07],
 s[(2 - i) & 0x07],
 s[(3 - i) & 0x07],
 s[(4 - i) & 0x07],
 s[(5 - i) & 0x07],
 s[(6 - i) & 0x07],
 s[(7 - i) & 0x07],
 Constants[i],
 w[i] = get(chunk, i),
);
 }

 foreach (i; 16 .. 64) {
 w[i & 0x0f] += SmallSigma1(
 w[(i + 14) & 0x0f]);
 w[i & 0x0f] +=
 w[(i + 9) & 0x0f];
 w[i & 0x0f] += SmallSigma0(
 w[(i + 1) & 0x0f]);
 Round(
 s[(0 - i) & 0x07],
 s[(1 - i) & 0x07],
 s[(2 - i) & 0x07],
 s[(3 - i) & 0x07],
 s[(4 - i) & 0x07],
 s[(5 - i) & 0x07],
 s[(6 - i) & 0x07],
 s[(7 - i) & 0x07],
 Constants[i],
 w[i & 0x0f],
);
 }

 foreach (i; 0 .. 8) {
 state[i] += s[i];
 }
 }
}

23

Integrity
Provided by a cryptographic hash of the message
Require either confidentiality or authenticity of the
hash
Fancier schemes can be used such as error correcting
code.

Solomon Reed for instance.

24

Authenticity

25

Walter

Authenticity

Hey Walter,
Andrei here...

26

HMAC

27

HMAC
If the key is too large hash the key.
Compute i = H(K0∣∣m) with

K0 the key with each byte XORed with 0x5c
m the message.
H the hash function.

Compute h = H(K1∣∣i) with

K0 the key with each byte XORed with 0x36

The double hashing protects against length extension
attacks. It is not required with modern hash functions.

28

HMAC
It's in the standard lib!

29

Confidentiality

30

WalterAndrei

Confidentiality

Nice...

31

CAESAR cipher

Shift each letter of a
message by some amount.

This amount is the key.

32

CAESAR cipher

Easy to try all the keys, less
than 5 bits of entropy.

Easy to break via statistical
analysis.

33

Vigenère cipher

Use multiple characters as
a key. Repeat the key to
match message length.

Solve the entropy problem.

Do not solve the statistical
analysis problem.

34

Stream cipher

35

PRGN
Instead of using the key to
encrypt, use the key to
seed a PRNG.

Message is XORed with the
stream to encrypt.

PRGN must do confusion
and diffusion.

IV
Reusing a pseudo random
stream reintroduce
statistical attack vectors.

A new initialization
vector is used for each
messages to generate a
new stream.

Can't regenerate the
stream without the secret
key. The IV is not secret.

36

Using a hash function as PRNG
ubyte[32] getPseudoRandom(
 ubyte[32] key,
 ubyte[16] iv,
 ulong i,
) {
 H hasher;

 hasher.start();
 hasher.put(key);
 hasher.put(iv);
 hasher.put(i);

 return hasher.finish();
}

37

But just use
ChaCha20

38

Block cipher

39

Block cipher
It is a useful crypto building
block.

It takes a secret key and a
message as input.

It output random looking
ciphertext.

ciphertext can be decrypted
using the secret key.

40

CTR: Stream cipher

Counter (CTR) mode encryption

block cipher
encryption

Nonce
c59bcf35…

Counter
00000000

Key

Plaintext

Ciphertext

block cipher
encryption

Nonce
c59bcf35…

Counter
00000001

Key

Plaintext

Ciphertext

block cipher
encryption

Nonce
c59bcf35…

Counter
00000002

Key

Plaintext

Ciphertext

41

ECB: insecure cipher

Electronic Codebook (ECB) mode encryption

block cipher
encryptionKey

Ciphertext

block cipher
encryptionKey

Ciphertext

block cipher
encryptionKey

Ciphertext

Plaintext Plaintext Plaintext

Electronic Codebook (ECB) mode decryption

block cipher
decryptionKey

Plaintext

block cipher
decryptionKey

Plaintext

block cipher
decryptionKey

Plaintext

Ciphertext Ciphertext Ciphertext

42

ECB: insecure cipher

Tux Tux ECB Tux encrypted

43

CBC: most common cipher

Cipher Block Chaining (CBC) mode encryption

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

Initialization Vector (IV)

Cipher Block Chaining (CBC) mode decryption

block cipher
decryptionKey

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryptionKey

Plaintext

Ciphertext

block cipher
decryptionKey

Plaintext

Ciphertext

44

Advanced
Encryption Standard

45

S box

A map of all possible 8bits
value to a new 8bits value.

Contribute to confusion and
diffusion.

46

P box
Shuffle bits across S boxes.

After several rounds,
confusion and diffusion are
total.

Between each round, the
result is XORed with data
generated from the key.

47

Implementation
P box and key
expansion are
straightforward.
Naive S box
implementation is a
lookup table.

Not secure !

"Running this on the Athlon64 with
knowledge about address mappings,
we succeeded in extracting the full key
after just 800 write operations done in
65ms (including the analysis of the
cache state after each write)"

http://www.cs.tau.ac.il/~tromer/pape
rs/cache-joc-20090619.pdf

48

http://www.cs.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf

No data flow from
secret to load address

49

Prime Field
Operations modulo a prime number

Close to a power of 2
Inversion is defined as the multiplicative inverse

x ∗ x = 1−1

50

Galois Field GF (p)n

p is a prime number.
Elements of the field are a set of n elements for the
prime field defined by p.

Similar to complex numbers.
Addition/subtraction are done on prime field
elements independently.

(a, b) + (c, d) = (a + c, b + d)

51

Galois Field GF (p)n

Multiplication generate 2n − 1 elements

(a, b) ∗ (c, d) = (a ∗ c, a ∗ d + b ∗ c, b ∗ d)
Reduce to n elements using an irreducible
polynomial
(a, b) ∗ (c, d) = (a ∗ d + b ∗ c, b ∗ d − a ∗ c) for polynomial
X + 1

Division rely on multiplicative inverse.

2

52

Galois Field GF (2)n

Addition and subtraction are just XOR
Multiplication subtract the polynomial until the result
is within bounds.
AES uses GF (2) for its S box and the polynomial
X + X + X + X + 1

Element of the S box are computed by taking the
multiplicative inverse of the input and applying
some affine transformation.
Computationally intensive.
Latest Intel offer implementation in hardware.

8

8 4 3

53

Confidentiality
Tricky to implement right

No load address depending on the secret.
Use ChaCha20 or AES

No ECB mode.

54

Commitments

55

Confidentiality
Keep the message
confidential.

Integrity
Can prove the message
existed and its content
wasn't altered.

56

Confidentiality Integrity
Cannot be a simple hash because
entropy of the message may not be
sufficient.
Use a blinding factor, sometime called
salt.
c = H(R∣∣m) with

H the hash function
R the blinding factor
m the message.

Perfect for passwords.

57

Asymmetric crypto

58

Math
Rely on math problem
which are easy in one way
but hard in the other.

For instance prime
factorization.

Here we'll use elliptic
curve.

No shared
secret
Participant do not need to
share a secret.

It is easier to keep the
secret secret.

59

Eliptic curves

y = x + a ∗ x + b

Defined over a finite field
Can define point addition and subtraction
Using P + P = 2 ∗ P we can define scalar point multiply
Given P = x ∗ G it is pretty much impossible to find x
given P and G

2 3

60

secp256k1
NIST's "Standards for Efficient Cryptography" (SEC2)
y = x + a ∗ x + b

a = 0
b = 9

Defined over a prime field
0xFFFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF_FFFFFFFEFFFFFC2F

close to a power of 2 so we can optimize
A point G is chosen and called generator

2 3

61

Scalar

Scalar are defined over a finite field
Operation modulo the curve order

0xFFFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFE_BAAEDCE6AF48A03B_BFD25E8CD036414

1

That's how many points do exist on the curve
Large 256 bits integer operation required

Leverage ucent and compiler legalization for good
quality codegen

Had to use SDC
Patched LLVM so it gets it just right

62

Scalar

static addImpl(Scalar a, Scalar b) {
 ulong[4] r;
 ucent acc;

 foreach (i; 0 .. 4) {
 acc += a.parts[i];
 acc += b.parts[i];
 r[i] = cast(ulong) acc;
 acc >>= 64;
 }

 return AddResult(r, !!(acc & 0x01));
}

63

Scalar

static select(bool cond, Scalar a, Scalar b) {
 auto maska = -ulong(cond);
 auto maskb = ~maska;

 ulong[4] r;
 foreach (i; 0 .. 4) {
 // NB: The compiler is still uses CMOV.
 auto ra = a.parts[i] & maska;
 auto rb = b.parts[i] & maskb;
 r[i] = ra | rb;
 }

 return Scalar(r);
}

64

Scalar
auto opCmp(Scalar b) const {
 auto bp = b.getParts();

 int bigger;
 int smaller;
 foreach_reverse (i; 0 .. 4) {
 // The higher ILP version require a few extra instructions.
 // TODO: Need to benchmark which one is best.
 enum WithILP = false;
 static if (WithILP) {
 auto isBigger = (parts[i] > bp[i]) & ~smaller;
 auto isSmaller = (parts[i] < bp[i]) & ~bigger;

 bigger |= isBigger;
 smaller |= isSmaller;
 } else {
 bigger |= (parts[i] > bp[i]) & ~smaller;
 smaller |= (parts[i] < bp[i]) & ~bigger;
 }
 }

 return bigger - smaller;
}

65

Scalar

No secret dependent control flow.
No secret dependent addresses.
No bound checks.

66

Field element

Field elements are defined in a finite field
Large 256 bits integer operation required
Prime close to a power of 2

Define the element as 1*48bits + 4*52bits
elements
Let carries accumulate
Keep track of how many carries we accumulated at
worse and normalize

No exact tracking as it would open side
channels.

67

Field element

auto normalize(ComputeElement e) {
 // We start by reducing all the MSB bits in part[4]
 // so that we will at most have one carry to reduce.
 parts = e.parts;
 ulong acc = (parts[4] >> 48) * Complement;

 // Clear the carries in part[4].
 parts[4] &= MsbMask;

 // Propagate.
 foreach (i; 0 .. 5) {
 acc += parts[i];
 parts[i] = acc & Mask;
 acc >>= 52;
 }

 assert(acc == 0, "Residual carry detected");
 return ComputeElement(parts);
}

68

Field element
auto add(ComputeElement b) const {
 auto a = this;
 ulong[5] parts;
 foreach (i; 0 .. 5) {
 parts[i] = a.parts[i] + b.parts[i];
 }

 auto cc = a.carryCount + b.carryCount + 1;
 auto r = ComputeElement(parts, cc);

 // We can branch on carryCount because it is only dependent on
 // control flow. If other part of the code do not branch based
 // on values, then carryCount do not depend on value.
 if (cc < 2048) {
 return r;
 }

 // We have 12bits to accumulate carries.
 // It means we can't add numbers which accumulated
 // 2048 carries or more.
 auto nr = NormalizationResult(r);
 return nr.raw;
}

69

Point multiplication

70

For G
Use heavy
precomputation.

All multiples of G per
4 bits blocks.
[0, 1, 2 ... 15]
[16, 32, ... 240]
...

Then blind the tables.
Access all elements in
the table to avoid
secret dependent
address loads.

Other points

Compute w-NAF
representation of the
scalar.
Compute odd multiple
table.
Multiply via doubling
and adds from the
table.
Access all elements in
the table to avoid
secret dependent
address loads.

71

Blinding 1

Chose H such as x is
unknown in H = x ∗ G

Add a0 ∗ H to all elements
in the first line.
Add a1 ∗ H to all elements
in the second line.
...
Subtract
(a0 + a1 + ... + a14) ∗ H to
all elements in the last
line.

Blinding 2

Add b0 ∗ G to all elements
in the first line.
Add b1 ∗ G to all elements
in the second line.
...
Add b15 ∗ G to all
elements int he last line.
Compute k = x − b with
b = b0 + b1 + ... + b15
Use k for table lookups.

72

w-NAF

Compute the multiple table of the point
[1, 3, 5, ..., 2 − 1]

Scalar is decomposed in a series of indices to lookup
and a sign bit.

Sign bit is stored in LSB : s = d & 0x01
Index is stored in other bits: i = d >> 1

Multiply by doubling and adds

w

73

w-NAF

// For the initial value, we can just look it up in the table.
auto first = select(table, lookup[Steps - 1]);
auto r = first.pdoublen!N();
r = r.add(select(table, lookup[Steps - 2]));

/**
 * The core multiplication routine. We double N times and
 * add the value looked up from the table each round.
 */
foreach (i; 2 .. Steps) {
 r = r.pdoublen!N();
 r = r.add(select(table, lookup[Steps - 1 - i]));
}

74

w-NAF

static select(ref Point[TableSize] table, ubyte n) {
 // The least significant bit is the sign. We get rid of it
 // to get the index we are interested in in the table
 auto idx = n >> 1;

 /**
 * We want to avoid side channels attacks. One of the most common
 * side channel is memory access, as it impact the cache. To avoid
 * leaking the secret, we make sure no memory access depends on the
 * secret. This is achieved by accessing all elements in the table.
 */
 auto p = table[0];
 foreach (i; 1 .. TableSize) {
 p = Point.select(i == idx, table[i], p);
 }

 // Finally we negate the point if the sign is negative.
 auto positive = (n & 0x01) != 0;
 return Point.select(positive, p, p.negate());
}

75

w-NAF

The number need to be odd.
For divisor of 255 add a skew of 1 or 2
For other number, negate if even.

255 = 3 ∗ 5 ∗ 17
3 and 5 are especially useful
Allow to shave one iteration off

76

w-NAF
void buildLookup(Scalar s) {
 /**
 * w-NAF require that the scalar is odd so ScalarBuf will
 * negate even scalars.
 */
 auto buf = ScalarBuf(s, skew);
 auto flipsign = !!(skew & 0x01);

 static pack(int u, bool flipsign) {
 /**
 * If u is positive, this is a noop. If it is negative, then
 * all bits are flipped. Because the LSB is known to be 1,
 * flipping the bits are the same as in the complement.
 *
 * The LSB is 0 for negative, 1 for positive, higher bits
 * are the absolute value and can be used as indices.
 */
 return ubyte(((u ^ flipsign) ^ (u >> 31)) & 0xff);
 }

 auto u = buf.extract();
 foreach (i; 1 .. Steps) {
 auto bits = buf.extract();

 /**
 * If the current number is even, we need to correct it such as
 * it is odd, so we create an all ones mask if even, 0 if odd.
 */
 auto even = (bits & 0x01) - 1;

77

w-NAF
 /**
 * To make it odd, we can either add or remove 1. We want
 * the previous digit to stay in range, so if it is positive,
 * we produce a 1, or a -1 if it isn't.
 */
 auto sign = (u >> 31) | 0x01;

 // We add or remove 1 to make this odd.
 bits += (sign & even);

 /**
 * We compensate the addition in the previous digit by adding or
 * removing 16. We knows it stays in range because we subtract or
 * add depending on its sign, and because it is odd, so non zero.
 */
 u -= ((sign & even) << N);

 // We computed one w-NAF digit, pack it.
 lookup[i - 1] = pack(u, flipsign);

 // Get ready for the next round.
 u = bits;
 }

 // Last digit, already corrected.
 lookup[Steps - 1] = pack(u, flipsign);
}

78

ECDH
Andrei chooses a and compute P a = a ∗ G

Walter chooses b and compute P b = b ∗ G

Andrei and Walter exchange P a and P b

Andrei compute S = a ∗ P b

Walter compute S = b ∗ P a

Both get S = a ∗ b ∗ G

They can now use symmetric crypto securely.

79

Schnorr Signature

Patented until 2009 so it is usable now but wasn't in
the past.

ECDSA more used in the wild now
Schnorr is faster, can be batch validated, and can
be extended to provide various features
It is also much simpler

Andrei has a private key x and a public key P = x ∗ G

Creating the signature require x but verifying only
requires P

80

Schnorr Signature

The signature is a pair (R, s)
Walter compute e = H(R∣∣P ∣∣m)
He verify that R = e ∗ P + s ∗ G

R goes in the hash function, so Andrei must have
chosen s such as it cancels e

Or he broke the hash function
How does he do it ?

81

Schnorr Signature
Andrei chose a random number k
He computes R = k ∗ G and e = H(R∣∣P ∣∣m)
He needs to finds s such as R = e ∗ P + s ∗ G

He knows
R = k ∗ G

P = x ∗ G

So k ∗ G = e ∗ x ∗ G + s ∗ G

He deduces s = k − e ∗ x

k is a blinding factor, it needs to be kept secret.

Best thrown away after the signature is generated
Use entropy from x to avoid requiring randomness

k = H(x∣∣nonce∣∣m)
82

Ring Signature
Any person in a group can sign.
There are no way to know who sign.
Signature is the tuple (R0, s0, s1, ..., sn)
To verify compute

R1 = H(R0∣∣P 0∣∣m) ∗ P 0 + s0 ∗ G

R2 = H(R1∣∣P 1∣∣m) ∗ P 1 + s1 ∗ G

...
Verify that R0 = H(Rn∣∣P n∣∣m) ∗ P n + sn ∗ G

Someone was able to chose one of the s such as
the ring can be closed.
Impossible to tell which one.

83

Ring Signature

Signer 0 chose k such as R1 = k ∗ G

Chooses random value for s1, s2, ..., sn

Compute R2, ..., Rn, R0
Compute e = H(R0∣∣P 0∣∣m)
Compute s0 = k − e ∗ x

Produce the signature.

84

Homomorphic
commitment

Use a second point H on the curve

No x such as G = x ∗ H is known

Andrei will prove that he has 2 numbers a and b
summing up to 10

Ca = a ∗ G + ra ∗ H and Cb = b ∗ G + rb ∗ H

The commitment is (Ca, Cb, r = ra + rb)

Walter verify that Ca + Cb = 10 ∗ G + r ∗ H

He knows that a + b = 10 but has no idea of the
value of a and b

85

Side channel

No load address depending on the secret.
No control flow depending on the secret.
Avoid CMOV depending on the secret.
Disable automatic check such as bound checks.

Just for the code handling the secret.
The compiler is a smart ass, inspect codegen.

Code
https://github.com/deadalnix/schnorr

86

https://github.com/deadalnix/schnorr

