
Porting D to a non-Windows
non-Posix platform
Igor Česi, Ubisoft Paris

D@Ubisoft

Why are we interested

Compilation speed

Memory safety

POC objectives

Port to a target platform

Evaluate dev tools

Estimate above points (if possible)

Porting

Porting process

Make it compile (stubbing)

Run (ideally tests) and check what is not working

Fill in the gaps and try again

Agenda

Compiler

druntime

Phobos

POC results

Compiler

Choosing your compiler

Depending on the hardware platform the choice can be
large or very limited

x86/x64 – all available compilers

Exotic hardware – limited choice (gdc and/or ldc)

Choice can be natural given the target software platform

Platform provider uses llvm/clang or gcc

Platform provider is MS

Choosing your compiler

In my case provider uses LLVM/Clang => LDC is natural
choice

But does not provide LLVM libraries necessary to compile
LDC

Platform modifications are closed source

Need to start from upstream LLVM and do necessary
modifications myself

Compiling the compiler

Problem: Choose the right triple

Choosing a well known architecture (linux/android) can bring
too many things which your platform does not support

Unknown-unknown is not valid for LDC

My choice: unknown-haiku, brings a smallest part of
suppositions on OS, good start in my case

Other choice: add support for your platform in LLVM, a
separate problem, will be probably done in the future (when
all works)

Compiling the compiler

Instructions to build a compiler on the net are quite good
and precise

Testing the compiler

Simple ‘C’ like code with ‘betterC’ switch is a good way to
see if your compiler works, and if it can be run on the target
platform

Opportunity to validate the debugger

Source debugging

Breakpoints

Watch points

Etc…

About versions

LDC @ v1.4.0

Frontend, druntime, Phobos @ 2.074.1

Some specific problems

‘Command line length’ problem when compiling LDC

(move source code up the folder hierarchy is a ‘sad but true’
solution)

Bug in CMakeFiles.txt when compiling LDC with Visual
Studio (and not Ninja) (link flags separator problem)

Check if this problem still exists and propose a patch

Dev environment

Visual D

target toolchain is Windows/Visual Studio based

Use C++ projects (and not visual D projects) to simplify and
match the expected final usage

Need to add support for target platform

End result makes no modifications to VisualD (only property
sheet additions which can be installed separately to
ImportBefore/ImportAfter folders for the target platform)

Learned how to debug MSBuild scripts in VS (it is possible!)

druntime

Quest for unit tests

Get the minimum building to be able to run unit tests

Minimum is BIG!

Memory allocations

Exceptions

TypeInfo

ModuleInfo

stdc

And all the dependencies…

Brute force approach…

Brute force strategy

Compile a file with –unittest and try to fix compilation/link
problems

Stub complicated stuf

Try to run and see where it crashes

Fix and repeat

Brute force approach… Failure!

Ended up with the crash in dynamic loader/linker, much
before the main is reached. No sources for it, hard to figure
out what was wrong.

One step at the time…

One step at the time strategy

Have something compiling and running all the time

Start with empty C++ main()

Implement rt_init()/rt_term() step by step

Stub whatever has a lot of dependencies

Introduce new things one at the time

One step at the time…

Quickly validated simple stuf

extern(C) functions

D interfaces to platform SDK

C style allocations (using gcstub)

Used custom tests and/or debugger for validation

One step at the time…

‘new’ allocation brings in a lot of dependencies

object, lifetime, TypeInfo, …

Generously stubbed all complex stuf to get it compile and
run...

Dynamic loader/linker strikes again!

Hit by the crash in the dynamic loader/linker again!

Able to compare running and crashing version

Problem => wrong relocation model (static instead of PIC)

Solution => patch the compiler to make PIC default for my
platform

Quest for unit tests… almost there!

Exceptions/Asserts are easy to get working once ‘new’ is
functional

Need working ModuleInfo to be able to find existing unit
tests ...

ModuleInfo

To get ModuleInfo you need a help of the compiler (and
linker)

Check RegistryStyle class in LDC for existing options (legacy,
ELF, Darwin)

Check TargetOptions for choice between global
constructors/destructors and init_array

ModuleInfo

druntime ‘sections’ implementation must match the choice
in the compiler

Several (diferent) implementations exist in druntime (for
diferent platforms)

Hopefully one matches your platform (not my case
unfortunately)

One step at the time… Success!

Unit tests work!

Filling the gaps

How to find platform specific code?

static assert(false, “Unsupported platform”) indicates which
files need attention

Does not cover all the cases however (some files have defaults
which might not be applicable to your case)

Once file identified, need to analyze the whole file for platform
specific bits

There is usually only one static assert per file

Can be challenging for bigger files

Do not forget to grep for ‘version’ keyword

GC, threads, TLS…

GC needs virtual memory, threads and sections to work

GC, threads, TLS…

GC needs virtual memory, threads and sections to work

Virtual memory => use malloc/free for now

GC, threads, TLS…

GC needs virtual memory, threads and sections to work

Threads => must be able to Suspend/Resume

Not in the public interface in my case (blocker!)

Luckily available as symbols, exposed via custom headers (huh)

GC, threads, TLS…

GC needs virtual memory, threads and sections to work

Sections => must be able to register BSS and TLS memory
with GC

Your linker might expose necessary symbols (__bss_start/end,
__tdata_start/end, etc.)

Your C runtime might expose __tls_get_addr() to obtain TLS
address for a thread

Check existing implementations too, they might match your case

Extern(C++) mangling problem

C++ uses substitution for namespaces while mangling

DMD will not use substitution if the symbol comes from a
diferent module

Missing feature or a bug?

Workarounds

Put everything in the same file

Use pragma(mangle) to adjust the mangling for problematic
functions/methods

Porting druntime - recap

Main challenges

Getting unit tests running

Sections implementation for GC

Phobos

80/20 rule

LOC

80% of code in Phobos is either platform agnostic or has a
simple dependency to platform specific code (e.g. ascii.d)

20% of code is platform specific

Time

20% of time spent to get 80% of Phobos working

80% of time spent to get the platform specific code ported
and working

Platform specific code

Two categories

Platform supports the feature (easy)

Platform does not or partially supports the feature (time
consuming, there are choices to make)

Drop support, implement partially or emulate fully?

Porting cost vs planned usage

Is needed by other Phobos packages/features?

Partial support examples

std/datetime

Partial support examples

std/datetime

Platform supports only dates between year 2000 and 2100

Partial support examples

std/datetime

Platform supports only dates between year 2000 and 2100

Date and TZ implementations are possible but limited

Partial support examples

std/datetime

Platform supports only dates between year 2000 and 2100

Date and TZ implementations are possible but limited

Many unit tests to adapt or disable (use dates outside the
supported range)

Partial support examples

std/datetime

Platform supports only dates between year 2000 and 2100

Date and TZ implementations are possible but limited

Many unit tests to adapt or disable (use dates outside the
supported range)

Will it really be used?

Other code depends on it (file.d), must have at least minimal
implementation

Partial support examples

File/path – getcwd()

Partial support examples

File/path – getcwd()

unistd version exists but is not supported (always returns
nullptr)

Partial support examples

File/path – getcwd()

unistd version exists but is not supported (always returns
nullptr)

Does not have the same meaning as in general purpose OS

Executable starts with no storage space available/mounted

Partial support examples

File/path – getcwd()

unistd version exists but is not supported (always returns
nullptr)

Does not have the same meaning as in general purpose OS

Executable starts with no storage space available/mounted

Could be (probably) fully emulated

Cost vs usage

Something must be implemented because of dependencies

Random bits

Some code is crashing the compiler (needs further
investigation)

Some unit tests in std/format.d

std/outbufer.d

Return of malloc(0) is implementation defined

numeric.d (MakeLocalFft()) expects a valid pointer which is
not guaranteed!

Porting Phobos - recap

Main challenge

Finding the balance between invested time and expected
usage when porting partially supported platform specific
features

POC results

No blockers!

Running D on target platform is possible

Dev tools exist and work

POC continues…

Presented work represents ~3-4 man/months

Finish porting to target platform

Increase dev tools comfort and reliability

Collect more data on the compilation speed

Will need real production code if possible

Questions?

Thank you!

	Slide 1
	D@Ubisoft
	Porting
	Agenda
	Compiler
	Choosing your compiler
	Choosing your compiler
	Compiling the compiler
	Slide 9
	Testing the compiler
	About versions
	Some specific problems
	Dev environment
	druntime
	Quest for unittests
	Brute force approach… Failure!
	Slide 17
	One step at the time… Success!
	One step at the time… Success!
	Slide 20
	Dynamic loader/linker strikes again!
	Quest for unittests… almost there!
	Slide 23
	Slide 24
	Slide 25
	Filling the gaps
	GC, threads, TLS…
	Slide 28
	Slide 29
	Slide 30
	Extern(C++) mangling problem
	Slide 32
	Phobos
	80/20 rule
	Platform specific code
	Partial support examples
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Partial support examples
	Slide 42
	Slide 43
	Slide 44
	Random bits
	Slide 46
	POC results
	No blockers!
	POC continues…
	Slide 50
	Slide 51

