
DConf 2018 LLVM-backed goodies in LDC 1

LLVM-backed goodies in LDC

Johan Engelen

LDC team

https://johanengelen.github.io

https://johanengelen.github.io/

DConf 2018 LLVM-backed goodies in LDC 2

Outline

● What LLVM provides and introduction to LLVM IR
● PGO innards
● Fuzzing and ASan

Feel free to interrupt me any time for questions or
comments

DConf 2018 LLVM-backed goodies in LDC 3

DMDfe – LDC – LLVM

DMDfe front-end

LDC

LLVM

source.d

Abstract Syntax
Tree (AST)

LLVM IR

Object files
CPU instructions

DConf 2018 LLVM-backed goodies in LDC 4

What LLVM provides

● Machine code generation
– Cross-target, x86, ARM, PowerPC, …, GPU and OpenCL

(https://github.com/libmir/dcompute)
● Optimization
● Well-defined interface: the Intermediate Representation (IR)
● “sanitizers” and profiling
● JIT (@dynamicCompile)
● Linker as library (linker integrated into LDC)
● C++ compiler as library (Calypso, and recently Atila's work)
● ...

DConf 2018 LLVM-backed goodies in LDC 5

D ––> LLVM IR

DConf 2018 LLVM-backed goodies in LDC 6

D ––> LLVM IR

DConf 2018 LLVM-backed goodies in LDC 7

Semantics and magic

● Clear and detailed definition of semantics is
paramount

● Semantics must abstract over hardware
– a “function call” is not necessarily a CPU call instruction

(otherwise inlining is impossible)
– the word “stack” in the spec does not mean the CPU stack

(some architectures don't even have stack instructions)
(more on this later)

● Optimization and instrumentation depend on these
abstract semantics

DConf 2018 LLVM-backed goodies in LDC 8

immutable

DConf 2018 LLVM-backed goodies in LDC 9

Profile-Guided Optimization (PGO)

● PGO illustrates LLVM's optimization and instrumentation functionality
● Optimization using two compile steps

– Compile with instrumentation: -fprofile-instr-generate
– Run program to obtain profile
– Compile and optimize using profile: -fprofile-instr-use=<profile>

● What information should a profile contain?
– Inlining (or not) plays major role in optimization

● After inlining, many new optimizations can be performed

– What kind of information is useful for inlining?
● control flow (how often is a statement executed)
● reoccuring values (mainly function pointers → indirect call promotion)

DConf 2018 LLVM-backed goodies in LDC 10

PGO with LLVM in LDC

● LLVM provides:
– profile file handling (storing/loading/merging/...)
– intrinsic functions + codegen + runtime library
– optimizations based on control flow and indirect call

pointer value metadata on IR
● LDC must do:

– add instrumentation code (calls to LLVM intrinsics)
– calculate information from obtained profile data and

add metadata on IR

DConf 2018 LLVM-backed goodies in LDC 11

PGO: control flow
instrumentation

DConf 2018 LLVM-backed goodies in LDC 12

PGO: Indirect Call Promotion (ICP)

DConf 2018 LLVM-backed goodies in LDC 13

PGO ICP:
instrumentation

DConf 2018 LLVM-backed goodies in LDC 14

PGO ICP: optimization with profile

DConf 2018 LLVM-backed goodies in LDC 15

More on PGO...

● https://johanengelen.github.io

● Interplay with LTO:
Jon Degenhardt's DConf 2018 talk
“Exploring D via Benchmarking of eBay's TSV Utilities”

● Note: D AST-based (this talk)
 versus IR-based (actively developed)

DConf 2018 LLVM-backed goodies in LDC 16

Fuzzing

DConf 2018 LLVM-backed goodies in LDC 17

normal compilation w ith LDC :

DConf 2018 LLVM-backed goodies in LDC 18

with LDC flag: -fsanitize=fuzzer

DConf 2018 LLVM-backed goodies in LDC 19

Fuzzing + extra sanity checks

● LLVM provides a memory safety checker:
Address Sanitizer (ASan)

● ASan is a combination of
– compiler-inserted instrumentation
– runtime library to manage memory and keep track

of valid and invalid memory locations (“poisoning”)
● LDC flag: -fsanitize=address

DConf 2018 LLVM-backed goodies in LDC 20

ASan and “stack”

DConf 2018 LLVM-backed goodies in LDC 21

More on libFuzzer and ASan...

● libFuzzer documentation
https://llvm.org/docs/LibFuzzer.html

● libFuzzer tutorial (interested in discovering the Heartbleed bug?)
https://github.com/google/fuzzer-test-
suite/blob/master/tutorial/libFuzzerTutorial.md

● Address Sanitizer documentation
https://github.com/google/sanitizers/wiki/AddressSanitizer

● “Finding memory bugs in D code with AddressSanitizer”
and “Fuzzing D code with LDC”
https://johanengelen.github.io

https://llvm.org/docs/LibFuzzer.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://johanengelen.github.io/

DConf 2018 LLVM-backed goodies in LDC 22

One last demo:
let's fuzz Jonathan's dxml library?

DConf 2018 LLVM-backed goodies in LDC 23

Summary

● If you want to learn about low-level details of compilation:
Read LLVM's mailing list

● If you want your code to run fast:
Use PGO and, more important, LTO!

● If you want your code to run safely:
Start fuzzing with ASan enabled

● If you are interested in working on LDC:
Good first PR: optimizing Walter's if(0){ … } trick that Eduard
presented yesterday. (not trivial!)

● If you want to join me in working on aggressive optimizations:
Let's add those nitty gritty details to the spec

DConf 2018 LLVM-backed goodies in LDC 24

Just eliminate if(0){...} ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

