
A Decade of D
@

We Inform Passengers
● countrywide systems, deployed all over europe
● train, bus, tram, planes, ...
● automated, manual intervention trouble situations
● wide range of different interfaces
● multilingual
● announcements, displays, mobile, ...

Copyright:
https://www.rosenheim24.de/bayern/muenchen-gueter
zug-entgleist-umschlagbahnhof-riem-stoerungen-bahn
betrieb-9824593.html

Quality Requirements
● highly reliable
● high level of customization
● maintainability

○ Test
○ Clean Code
○ Reviews

Why D?
● neither C++ nor Java
● new language to break old habits
● run fast: native code
● modern, convenient
● unittest built-in

Tango with D
Pros

○ fast XML parser
○ logging
○ network protocols
○ familiar class library

Cons

○ not what later became
“The D Programming Language”

Short History
● 2008: First experiment in Tango with D
● 2009: Second experiment
● 2010: Tango: “Tickets for the community”
● 2010: Alexandrescu: “The D Programming Language”
● 2011: Alexandrescu: “D1 to be discontinued on December 31, 2012”
● 2012: SiegeLord: “Tango for D2: All user modules ported”
● 2012: Poor poll results for D at Funkwerk
● 2012: Porting to D2 and Phobos

Short History

● 2013: DConf: “Code Analysis for D with AnalyzeD”
● 2015: GitHub: funkwerk
● 2016: Meetup: Munich D Programmers
● 2016: Add std.algorithm.iteration.cumulativeFold
● 2017: Greenfield Passenger Information System in D
● 2018: DConf: “A Decade of D”

https://github.com/funkwerk
https://www.meetup.com/de-DE/Munich-D-Programmers/
https://github.com/dlang/phobos/pull/3972

Effective D
● Prefer foreach loops to traditional for loops
● Use std.algorithm or std.range instead
● Take advantage of UFCS

○ 5.minutes

○ function chaining

● Take advantage of UFCS where appropriate
○ don’t: “hello”.writeln
○ don’t: “%s”.format(42) like in Python

(thankfully it’s format!”%s”(42) by now)

● ...

Contract Programming

Contract Programming
assert

● evaluates expression
● if the value is false,

AssertError is thrown
● language keyword
● for verifying the logic of the program
● in principle provable
● no run-time checks for -release version

enforce

● evaluates expression
● if the value is false,

Exception (Throwable) is thrown
● function template from std.exception
● for validating data

Example: Theory and Practice
int div(int x, int y)

in

{

 assert(y != 0);

}

out(z)

{

 assert(x == y * z + x % y);

}

body

{

 ...

}

DIP 1003: Remove body as a Keyword
int div(int x, int y)

in

{

 assert(y != 0);

}

out(z)

{

 assert(x == y * z + x % y);

}

do

{

 ...

}

DIP 1009: Add Expression-Based Contract Syntax
int div(int x, int y)

 in(y != 0)

 out(z; x == y * z + x % y)

{

 ...

}

Design by Contract
● Non-Redundancy principle
● Assertion Violation rule
● Reasonable Precondition principle
● Precondition Availability rule
● Assertion Evaluation rule
● Invariant rule

Design by Contract
● Non-Redundancy principle

○ Under no circumstances shall the body of a routine
ever test for the routine’s precondition.

● Assertion Violation rule
● Reasonable Precondition principle
● Precondition Availability rule
● Assertion Evaluation rule
● Invariant rule

Design by Contract
● Non-Redundancy principle
● Assertion Violation rule

○ A run-time assertion violation is the manifestation of a bug in the software.
○ A precondition violation is the manifestation of a bug in the client.
○ A postcondition violation is the manifestation of a bug in the supplier.

● Reasonable Precondition principle
● Precondition Availability rule
● Assertion Evaluation rule
● Invariant rule

Design by Contract
● Non-Redundancy principle
● Assertion Violation rule
● Reasonable Precondition principle

○ Every routine precondition must satisfy the following requirements:
■ The precondition appears in the official documentation

distributed to authors of client modules.
■ It is possible to justify the need for the precondition

in terms of the specification only.

● Precondition Availability rule
● Assertion Evaluation rule
● Invariant rule

Design by Contract
● Non-Redundancy principle
● Assertion Violation rule
● Reasonable Precondition principle
● Precondition Availability rule

○ Every feature appearing in the precondition of a routine
must be available to every client to which the routine is available.

● Assertion Evaluation rule
● Invariant rule

Design by Contract
● Non-Redundancy principle
● Assertion Violation rule
● Reasonable Precondition principle
● Precondition Availability rule
● Assertion Evaluation rule

○ During the process of evaluating an assertion at run-time,
routine calls shall be executed without any evaluation of the associated assertions.

● Invariant rule

Design by Contract
● Non-Redundancy principle
● Assertion Violation rule
● Reasonable Precondition principle
● Precondition Availability rule
● Assertion Evaluation rule
● Invariant rule

○ An assertion I is a correct class invariant for a class C
if and only if it meets the following two conditions:

■ Every creation procedure of C, when applied to arguments satisfying its precondition
in a state where the attributes have their default values, yields a state satisfying I.

■ Every exported routine of the class, when applied to arguments and a state
satisfying both I and the routine's precondition, yields a state satisfying I.

Subcontracting
● Parents’ Invariant rule
● Assertion Redeclaration rule

Subcontracting
● Parents’ Invariant rule

○ The invariants of all the parents of a class apply to the class itself.

● Assertion Redeclaration rule

Subcontracting
● Parents’ Invariant rule
● Assertion Redeclaration rule

○ A routine redeclaration may only replace the original precondition by one equal or weaker,
and the original postcondition by one equal or stronger.

In, Out and Inheritance
interface I

{

 int foo(int x)

 in(x != 0)

 out(y; y != 0);

}

class C : I

{

 override int foo(int x)

 in(false)

 out(; true)

 {

 ...

 }

}

In, Out and Inheritance
interface I

{

 int foo(int x)

 in(x != 0)

 out(y; y != 0);

}

class C : I

{

 override int foo(int x)

 in(x != 0)

 out(y; y != 0)

 {

 ...

 }

}

Contract Programming
Pros

○ “null safety” instead of segmentation faults
○ clear statement what is required and ensured
○ clear statement who is to blame
○ living documentation

Cons

○ often misused as wish machine
○ gaps between synchronized in, out, and body
○ Issue 15984 - [REG2.071]

Interface contracts retrieve garbage instead of parameters

https://issues.dlang.org/show_bug.cgi?id=15984
https://issues.dlang.org/show_bug.cgi?id=15984

Unit Testing

Theoretical Unit Testing
int div(int x, int y)

 in(y != 0)

 out(z; x == y * z + x % y)

{

 ...

}

// Don’t Try This at Home

unittest

{

 div(5, 2);

 div(-5, 2);

 div(5, -2);

 div(-5, -2);

}

xUnit Testing Framework
How to get as much information as possible
out of a failed test run?

GitHub: linkrope/dunit

○ replacement of Dunit (for D1)
○ forked from GitHub: jmcabo/dunit
○ user-defined attributes @Test, ...
○ by now, based on latest version JUnit 5

https://github.com/linkrope/dunit
http://www.dsource.org/projects/dmocks/wiki/DUnit
https://github.com/jmcabo/dunit
https://junit.org/junit5/

Example: Testcase Class
class TrainTest

{

 mixin UnitTest;

 @BeforeEach

 void setUp() ...

 @Test

 void testCase1() ...

 @Test

 void testCase2() ...

 @AfterEach

 void tearDown() ...

}

xUnit Testing Framework for D
Pros

○ tests are organized in classes
○ tests are always named
○ tests can reuse a shared fixture
○ all failed tests are shown at once
○ more information about failures
○ progress indication
○ XML test report in JUnitReport format

Cons

○ mixin UnitTest; is mandatory

Sentence Style for Naming Unit Tests
class TrainTest

{

 mixin UnitTest;

 @BeforeEach

 void setUp() ...

 @Test

 void canBeDelayed() ...

 @Test

 void canBeCanceled() ...

 @AfterEach

 void tearDown() ...

}

@DisplayName...
@("train can be delayed")

unittest

{

 ...

}

@("train can be canceled")

unittest

{

 ...

}

Pulling the Fixture into the unittest
unittest

{

 with (Fixture())

 {

 ...

 }

}

struct Fixture

{

 static Fixture opCall() ... // set up

 ~this() ... // tear down

}

Test Execution
GitHub: atilaneves/unit-threaded

○ tests can be named
○ tests can be run selectively
○ tests can be run in parallel
○ subset of the features is compatible with built-in unittest

https://github.com/atilaneves/unit-threaded

Expectations
● assert

● static assert

● assertEquals

● Fluent Assertions

Expectations
● assert

○ assert(answer == 42);

○ core.exception.AssertError@test.d(5): unittest failure

● static assert

● assertEquals

● Fluent Assertions

Expectations
● assert

● static assert
○ static assert(answer == 42);

○ test.d(5): Error: static assert: 54 == 42 is false

● assertEquals

● Fluent Assertions

Expectations
● assert

● static assert

● assertEquals
○ assertEquals(42, answer);

○ dunit.assertion.AssertException@test.d(5): expected: <42> but was: <54>

● Fluent Assertions

Expectations
● assert

● static assert

● assertEquals
○ assertEquals(42, answer);

○ dunit.assertion.AssertException@test.d(5): expected: <42> but was: <54>

○ answer.assertEquals(42);

○ dunit.assertion.AssertException@test.d(5): expected: <54> but was: <42>

● Fluent Assertions

Expectations
● assert

● static assert

● assertEquals

● Fluent Assertions
○ answer.should.equal(42);

○ TBD

Mock Object Framework
GitHub: funkwerk/dmocks

○ forked from GitHub: QAston/DMocks-revived
○ reactivation of DMocks

https://github.com/funkwerk/dmocks
https://github.com/QAston/DMocks-revived
http://dsource.org/projects/dmocks/

Code Coverage
We use separate src and unittest directories.

GitHub: ohdatboi/covered

○ shows coverage result per file
○ shows average coverage
○ moves *.lst files out of the way

https://github.com/ohdatboi/covered

Architecture and Design

Umbrello UML Modeller
Umbrello UML Modeller 2
supports ActionScript, Ada,
C++, C#, D, IDL, Java™,
Javascript, MySQL, and
Pascal source code.

UML to D
uxmi2d

○ forward engineering
from class diagrams
to D skeleton code

○ tries to keep existing code
○ for Umbrello’s XMI

UML to D
axmi2d

○ forward engineering
from class diagrams
to D skeleton code

○ tries to keep existing code
○ for ArgoUML’s XMI

UML to D
Pros

○ living documentation
○ generation of getters and setters
○ documentation comments for contracts
○ enforced style

■ one class per file
■ fields first, then member functions
■ (alphabetical) order of attributes

Cons

○ refactoring with a drawing tool sucks

PlantUML
ASTVisitor <|-- Outliner

Outliner -> "*" Classifier

Classifier --> "*" Field

Classifier --> "*" Method

D to UML
GitHub: funkwerk/d2uml

○ reverse engineering
from D source code
to PlantUML class outlines

https://github.com/funkwerk/d2uml

Example: Self-Portrait
!include classes.plantuml

main .> Outliner

ASTVisitor <|-- Outliner

Outliner -> "*" Classifier

Classifier --> "*" Field

Classifier --> "*" Method

Outliner ..> outliner

D to UML
Pros

○ living documentation
○ easy retrofitting

Cons

○ no support for relationships between classes
(good arrangement is essential for creating effective diagrams)

○ no code generation

Generate Getters, Setters
GitHub: funkwerk/accessors

import accessors;

class C

{

 @Read

 @Write

 private int bar_;

 mixin(GenerateFieldAccessors);

}

https://github.com/funkwerk/accessors

Generate Getters, Setters
GitHub: funkwerk/accessors

import accessors;

class C

{

 @Read

 @Write

 private int bar_;

 mixin(GenerateFieldAccessors);

}

https://github.com/funkwerk/accessors

Generate Getters, Setters and Everything
GitHub: funkwerk/boilerplate

import boilerplate;

class C

{

 ...

 mixin(GenerateFieldAccessors);

 mixin(GenerateInvariants);

 mixin(GenerateThis);

 mixin(GenerateToString);

}

https://github.com/funkwerk/boilerplate

Dependency Tool
“The overall structure of the system may never have been well defined.
If it was, it may have eroded beyond recognition.” (Big Ball of Mud)

GitHub: funkwerk/depend

○ visualizes import dependencies
○ checks actual import dependencies

against a UML model of target dependencies
○ considers module or package dependencies

http://www.laputan.org/mud/
https://github.com/funkwerk/depend

depend: Visualize Dependencies

depend: Visualize Dependencies

Example: model-view-controller
package model {}

package view {}

package controller {}

controller ..> view

controller ..> model

view .> model

depend: Check Dependencies

error: unintended dependency controller.controller -> model.model
error: unintended dependency controller.controller -> view.view
error: unintended dependency view.view -> model.model

Summary
Code For The Maintainer

○ Use Contract Programming
○ Write Helpful Unit Tests
○ Safeguard the Structure

http://wiki.c2.com/?CodeForTheMaintainer

A Decade of D
in Germany

One more thing...

