A Decade of D
@funkwerk)))



We Inform Passengers

countrywide systems, deployed all over europe
train, bus, tram, planes, ...

automated, manual intervention trouble situations
wide range of different interfaces

multilingual

announcements, displays, mobile, ...






{ an

4
if
] [ Al
y R
4 47
i/
"

W,

AR

.!\U_ Saan
1 /]}

erdam CS

von Amst:

-« B Friedrichstraie







Quality Requirements

e highly reliable
e high level of customization
e maintainability

o Test

o Clean Code
o Reviews



Why D?

neither C++ nor Java

new language to break old habits
run fast: native code

modern, convenient

unittest built-in



Tango with D

Pr
0S firstPress
o fast XML parser Learn to
o logging
o network protocols Tan go W|th D
o familiar class library g
Cons : T;;c:gx:;l Lifetime

16 Text Processing
#7 Input and Output
he Other Packages

o not what later became
“The D Programming Language” R ot =

Kris Macleod Bell, Lars Ivar Igesund,
Sean Kelly, and Michael Parker

APIESS



Short History

2008: First experiment in Tango with D

2009: Second experiment

2010: Tango: “Tickets for the community”

2010: Alexandrescu: “The D Programming Language”

2011: Alexandrescu: “D1 to be discontinued on December 31, 2012”
2012: SiegelLord: “Tango for D2: All user modules ported”

2012: Poor poll results for D at Funkwerk

2012: Porting to D2 and Phobos



Short History

2013: DConf: “Code Analysis for D with AnalyzeD”
2015: GitHub: funkwerk

2016: Meetup: Munich D Programmers

2016: Add std.algorithm.iteration.cumulativeFold

2017: Greenfield Passenger Information System in D
2018: DConf: “A Decade of D”



https://github.com/funkwerk
https://www.meetup.com/de-DE/Munich-D-Programmers/
https://github.com/dlang/phobos/pull/3972

Effective D

e Prefer foreach loops to traditional for loops
e Use std.algorithmor std.range instead
e Take advantage of UFCS

o 5.minutes
o function chaining

e Take advantage of UFCS where appropriate
o don’t: “hello”.writeln

o don’t: “%s”.format(42) like in Python
(thankfully it's format!”’%s” (42) by now)



Contract Programming



Contract Programming

assert

evaluates expression

if the value is false,

AssertError is thrown

language keyword

for verifying the logic of the program

in principle provable

no run-time checks for -release version

enforce

e evaluates expression
e if the value is false,
Exception (Throwable) is thrown
e function template from std.exception
e for validating data



Example: Theory and Practice

int div(int x, int y)
in
{
assert(y != 0);
¥
out(z)
{
assert(x ==y * z + X % y);
¥
body

{
}



DIP 1003: Remove body as a Keyword

int div(int x, int y)
in
{
assert(y != 0);
}
out(z)
{

assert(x ==y * z + X % y);



DIP 1009: Add Expression-Based Contract Syntax

int div(int x, int y)

in(y != 0)
out(z; x ==y *z+x2%y)

{
}



Design by Contract
(*)|BJECT-ORIENTED

e Non-Redundancy principle
e Assertion Violation rule ottt bkl e
e Reasonable Precondition principle PR
e Precondition Availability rule The Most
Comprehensive,
e Assertion Evaluation rule reterence e
e [nvariant rule moo
by a Pioneer
in the Field

CD-ROM Includes ;!

Complete Hypertextji§
Version of Book ;
AnD Object-Oriented |}
Development
Environment

BeErTRAND MEYER



Design by Contract

Non-Redundancy principle

o Under no circumstances shall the body of a routine
ever test for the routine’s precondition.

Assertion Violation rule
Reasonable Precondition principle
Precondition Availability rule
Assertion Evaluation rule
Invariant rule



Design by Contract

e Non-Redundancy principle

e Assertion Violation rule

o Arun-time assertion violation is the manifestation of a bug in the software.
o A precondition violation is the manifestation of a bug in the client.
o A postcondition violation is the manifestation of a bug in the supplier.

Reasonable Precondition principle
Precondition Availability rule
Assertion Evaluation rule
Invariant rule



Design by Contract

e Non-Redundancy principle
e Assertion Violation rule

e Reasonable Precondition principle

o Every routine precondition must satisfy the following requirements:
m The precondition appears in the official documentation
distributed to authors of client modules.
m Itis possible to justify the need for the precondition
in terms of the specification only.

e Precondition Availability rule
e Assertion Evaluation rule
e Invariant rule



Design by Contract

Non-Redundancy principle
Assertion Violation rule
Reasonable Precondition principle

Precondition Availability rule
o Every feature appearing in the precondition of a routine
must be available to every client to which the routine is available.

e Assertion Evaluation rule
e Invariant rule



Design by Contract

Non-Redundancy principle
Assertion Violation rule
Reasonable Precondition principle
Precondition Availability rule

Assertion Evaluation rule
o During the process of evaluating an assertion at run-time,
routine calls shall be executed without any evaluation of the associated assertions.

e Invariant rule



Design by Contract

Non-Redundancy principle
Assertion Violation rule
Reasonable Precondition principle
Precondition Availability rule
Assertion Evaluation rule

Invariant rule
o An assertion / is a correct class invariant for a class C
if and only if it meets the following two conditions:
m Every creation procedure of C, when applied to arguments satisfying its precondition
in a state where the attributes have their default values, yields a state satisfying /.
m Every exported routine of the class, when applied to arguments and a state
satisfying both / and the routine's precondition, yields a state satisfying /.



Subcontracting (|BJECT-ORIENTED

e Parents’ Invariant rule

e Assertion Redeclaration rule SECOND EDITION

# .

(@ The Most

Comprehensive, B
Definitive 0-0 :
Reference Ever

Published

An 0-0
Tour de Force
by a Pioneer
in the Field

CD-ROM Includes  §
Complete Hypertexty
Version of Book
AND Object-Oriente:
Development
Environment

BeErTRAND MEYER



Subcontracting

e Parents’ Invariant rule
o The invariants of all the parents of a class apply to the class itself.

e Assertion Redeclaration rule



Subcontracting

e Parents’ Invariant rule

e Assertion Redeclaration rule
o Aroutine redeclaration may only replace the original precondition by one equal or weaker,
and the original postcondition by one equal or stronger.



In, Out and Inheritance

interface I

{
int foo(int x)
in(x != 9)
out(y; y != 9);
}

class C : I

{

override int foo(int x)
in(false)
out(; true)



In, Out and Inheritance

interface I

{
int foo(int x)
in(x != 9)
out(y; y != 9);
}

class C : I

{

override int foo(int x)
in(x != 9)
out(y; y != 9)



Contract Programming

Pros
o “null safety” instead of segmentation faults
o clear statement what is required and ensured
o clear statement who is to blame
o living documentation
Cons

o often misused as wish machine
o gaps between synchronized in, out, and body
o Issue 15984 - [REG2.071]
Interface contracts retrieve garbage instead of parameters



https://issues.dlang.org/show_bug.cgi?id=15984
https://issues.dlang.org/show_bug.cgi?id=15984

Unit Testing



Theoretical Unit Testing

int div(int x, int y)

in(y != 0)

out(z; x ==y *z+x2%y)
{
}
// Don’t Try This at Home
unittest
{

div(5, 2);

div(-5, 2);

div(5, -2);

div(-5, -2);



xUnit Testing Framework

How to get as much information as possible
out of a failed test run?

GitHub: linkrope/dunit

replacement of Dunit (for D1)

forked from GitHub: jmcabo/dunit
user-defined attributes @Test, ...

by now, based on latest version JUnit 5

(@)
(@)
(@)
(@)

N Fo,
o %

<
<M\ )

XUNIT TEST ‘s

PATTERNS

GERARD MESZAROS ™

Foreword by Martin Fowler



https://github.com/linkrope/dunit
http://www.dsource.org/projects/dmocks/wiki/DUnit
https://github.com/jmcabo/dunit
https://junit.org/junit5/

Example: Testcase Class

class TrainTest

{

mixin UnitTest;

@BeforeEach
void setUp() ...

@Test
void testCasel() ...

@Test
void testCase2() ...

@AfterEach
void tearDown() ...



xUnit Testing Framework for D

Pros

tests are organized in classes

tests are always named

tests can reuse a shared fixture

all failed tests are shown at once

more information about failures
progress indication

XML test report in JUnitReport format

O O O O O O O

Cons

o mixin UnitTest; is mandatory



Sentence Style for Naming Unit Tests

class TrainTest

{

mixin UnitTest;

@BeforeEach
void setUp() ...

@Test
void canBeDelayed() ...

@Test
void canBeCanceled() ...

@AfterEach
void tearDown() ...



@DisplayName...

@("train can be delayed")
unittest

{
}

@("train can be canceled")
unittest

{
}



Pulling the Fixture into the unittest

unittest
{
with (Fixture())
{
}
}
struct Fixture
{
static Fixture opCall() ... // set up
~this() ... // tear down



Test Execution

GitHub: atilaneves/unit-threaded

tests can be named

tests can be run selectively

tests can be run in parallel

subset of the features is compatible with built-in unittest

o O O O


https://github.com/atilaneves/unit-threaded

Expectations

assert

static assert
assertEquals
Fluent Assertions



Expectations

® assert

O assert(answer == 42);
o core.exception.AssertError@test.d(5): unittest failure

e static assert
e assertEquals
e Fluent Assertions



Expectations

® assert
e static assert
O static assert(answer == 42);

O test.d(5): Error: static assert: 54 42 is false

e assertEquals
e Fluent Assertions



Expectations

® assert
e static assert
e assertEquals

o assertEquals(42, answer);
O dunit.assertion.AssertException@test.d(5): expected: <42> but was: <54>

e Fluent Assertions



Expectations

® assert
e static assert
e assertEquals

o assertEquals(42, answer);
O dunit.assertion.AssertException@test.d(5): expected: <42> but was: <54>

o answer.assertEquals(42);
O dunit.assertion.AssertException@test.d(5): expected: <54> but was: <42>

e Fluent Assertions



Expectations

assert

static assert
assertEquals
Fluent Assertions

o answer.should.equal(42);
o TBD



Mock Object Framework

GitHub: funkwerk/dmocks

o forked from GitHub: QAston/DMocks-revived
o reactivation of DMocks



https://github.com/funkwerk/dmocks
https://github.com/QAston/DMocks-revived
http://dsource.org/projects/dmocks/

Code Coverage

We use separate src and unittest directories.

GitHub: ohdatboi/covered

o shows coverage result per file
o shows average coverage
o moves *.1st files out of the way


https://github.com/ohdatboi/covered

Architecture and Design



Umbrello UML Modeller

25 Untitled [modified] - Umbrello UML Modeller

2= Umbrello UML Modeller 2

(2 @ & =D @& X D | @ @ . .

New Open Save Print Undo FRedo Cut Copy Paste Zoom Slider Zoom to 100% Supports ACtlonSC,’Ipt’ Ada’
2% om0 m om @R | j

Selj;t Note Anchor Label Box Class Interface Datatype Enum Package Association C++’ C#’ D’ IDL’ Java TM’

Tree View & X [ class diagram x

UML Model 5 3 .

e 0 Javascript, MySQL, and

- " Logical View [KDE 4]

B e ' = Pascal source code.

=KD 4 A
Command history o X m
Ll - I
Change Multiplicity ol A
Change Multiplicity
Move widget :Amazing
Change Properties i
@ [Start of Something Amazing |
3 : {
<L ] <>

Documentatio Command histor

class diagram
)




UML to D

uxmi2d

o forward engineering

from class diagrams

to D skeleton code
o tries to keep existing code
o for Umbrello’s XMI

(uxmizd.py --model design.xmi --source src)




UML to D

axmi2d

o forward engineering

from class diagrams

to D skeleton code
o tries to keep existing code
o for ArgoUML’s XMI

(axmizd.py --model design.xmi --source src)




UML to D

Pros

Cons

o O O O

living documentation
generation of getters and setters
documentation comments for contracts
enforced style
m one class per file
m fields first, then member functions
m (alphabetical) order of attributes

refactoring with a drawing tool sucks



PlantUML

ASTVisitor <|-- Outliner
Outliner -> "*" Classifier
Classifier --> "*" Field
Classifier --> "*" Method




D to UML

GitHub: funkwerk/d2uml

o reverse engineering
from D source code
to PlantUML class outlines

d2uml *.d

(java -jar plantuml.jar diagram.uml)

®



https://github.com/funkwerk/d2uml

Example: Self-Portrai

linclude classes.plantuml

main .> Outliner
ASTVisitor <|-- Outliner
Outliner -> "*" Classifier
Classifier --> "*" Field
Classifier --> "*" Method
Outliner ..> outliner

ASTVisitor

I\

(©) outliner

File output

string fileName
Classifier classifier
string visibility

Classifier[] classifiers

main

@ int main(string[] args)

® int process(string[] names)

© ubyte[] read()

o void messageFunction(string, size_t. size_t. string, bool)

this(File output, string fileName)

o
o
o
o
o string[] modifiers
o
°
© void visit(const AttributeDeclaration attributeDeclaration)

@ Classifier

© void visit{const ClassDeclaration classDeclaration)

o void visit(const Constructor constructor) o string indent
@ void visit(const Declaration declaration) # | © string type
© void visit(const Destructor destructor) ——>{ o string[] qualifiedName
@ void visit(const EnumDeclaration enumDeclaration) o string stereotype
© void visit(const EnumMember enumMember) o Field[] fields
@ void visit(const FunctionDeclaration functionDeclaration) © Method[] methods
© void visit(const InterfaceDeclaration interfaceDeclaration) = o o T
o void write(Sink sink)

o void visit(const Invariant invariant_)

@ void visit(const Module module_)

© void visit(const SharedStaticConstructor sharedStaticConstructor)
@ void visit(const SharedStaticDestructor sharedStaticDestructor)

© void visit(const StaticConstructor staticConstructor)

© void visit(const StaticDestructor staticDestructor)

© void visit{const StructDeclaration structDeclaration)

© void visit{const Unittest unittest )

@ void visit(const VariableDeclaration variableDeclaration)

m void hidelin string[] qualifiedName)

¥

. outliner

m string escape(string source)

m const(Attribute[]) protectionAttributes(const Declaration declaration)
m constiAttribute[]) protectionAttributes(const Attribute attribute)

m string toVisibility(const Token token)

m string[] modifiers(const Declaration declaration)

Field

@ Method

o string visibility

o string[] modifiers
o string type

o string name

o string visibility

o string[] modifiers
o string type

o string name

o string parameters

o void write(Sink sink)

o void write(Sink sink)




D to UML

Pros

o living documentation
o easy retrofitting

o no support for relationships between classes
(good arrangement is essential for creating effective diagrams)
o no code generation



Generate Getters, Setters

GitHub: funkwerk/accessors

import accessors;

class C

{
@Read
@Write

private int bar_;

mixin(GenerateFieldAccessors);


https://github.com/funkwerk/accessors

Generate Getters, Setters

GitHub: funkwerk/accessors

import accessors;

class C

{
@Read
@Write

private int bar_;

mixin(GenerateFieldAccessors);


https://github.com/funkwerk/accessors

Generate Getters, Setters and Everything

GitHub: funkwerk/boilerplate

import boilerplate;

class C

{

mixin(GenerateFieldAccessors);
mixin(GeneratelInvariants);
mixin(GenerateThis);
mixin(GenerateToString);


https://github.com/funkwerk/boilerplate

Dependency Tool

“The overall structure of the system may never have been well defined.
If it was, it may have eroded beyond recognition.” (Big Ball of Mud)

GitHub: funkwerk/depend

o visualizes import dependencies
o checks actual import dependencies

against a UML model of target dependencies
o considers module or package dependencies


http://www.laputan.org/mud/
https://github.com/funkwerk/depend

depend: Visualize Dependencies

3

(dmd -deps=dependencies *.d)

¥

(depend --dot dependencies)

O

controller

\

view

/

model




depend: Visualize Dependencies

3

(dmd -deps=dependencies *.d)

¥

[depend --dot dependencies)

transitive reduction filterlﬁ

controller

'

view

'

model




Example: model-view-controller
package model {} M\

package view {}
package controller {} —

controller ..> view
controller ..> model view& model\

view .> model




depend: Check Dependencies

?

[dmd -deps=dependencies *.d)

¥

(depend -target model.uml dependencies)

®

error: unintended dependency controller.controller -> model.model
error: unintended dependency controller.controller -> view.view
error: unintended dependency view.view -> model.model




Summary

Code For The Maintainer

o Use Contract Programming
o  Write Helpful Unit Tests
o Safeguard the Structure


http://wiki.c2.com/?CodeForTheMaintainer

A Decade of D

entwickler.press

in Germany

Programmierenin D

Einfihrungin die neue Sprache

Tobias Wassermann, Christian Speer




One more thing...



