
UnifiedUnified
CConcurrentoncurrent Runtime Runtime

for for DD
DConf 2018

Dmitry Olshansky

Unify what?Unify what?

In essence it's all about fibers
...and threads that schedule them

Fiber is a cooperative user-mode thread

D's fibers are scheduled manually

Hence we have a multitude of custom schedulers

Vibe.d is a popular one

Fibers primerFibers primer
struct Node {
 int payload;
 Node* left, right;
}

void main(){
 int current;
 auto tree = new Node(3, new Node(2, new Node(1)), new Node(4));
 void postorder(Node* n) {
 if (n.left) postorder(n.left);
 current = n.payload;
 Fiber.yield();
 if (n.right) postorder(n.right);
 }
 Fiber f = new Fiber(() => postorder(tree));
 for (;;) {
 f.call();
 if (f.state == Fiber.State.TERM) break;
 writeln(current);
 }
}

Fibers and I/OFibers and I/O

// Sketch of TCP echo server
import std.socket;
void echo(Socket sock, ubyte[] buffer)
{
 ssize_t read, write;
 for(;;) {
 do {
 read = sock.read(buffer[]);
 if (sock.wouldHaveBlocked) Fiber.yield();
 else if (read <= 0) break;
 } while(read < 0);
 do {
 write = sock.write(buffer[0..read]);
 if (sock.wouldHaveBlocked) Fiber.yield();
 else if (read <= 0) break;
 } while(write < 0);
 }
}

Now with I/O it gets tricky - the thread would be blocked

Suboptimal w/o eventloop + somebody needs to 'call' fibers

Fibers and I/OFibers and I/O

import vibe.vibe;

void main()
{
 listenTCP(7, (conn) { conn.write(conn); });
 runApplication();
}

Vibe.d chooses to provide its own I/O API

Nice and clean

Or is it?

CaveatsCaveats
Using anything not Fiber-aware will block thread and ruin
performance

There are zero C/C++/Rust libraries that are made
to run on top of Vibe.d

std.net.curl, std.socket, std.process do not work with Fibers

std.concurrency was extended to work with custom scheduler

To Fiberize or not, that is the question

Poject PhotonPoject Photon
Transparent fiber scheduler that
works with *most* blocking
C/C++/etc code

Look beyond I/O and 3rd party
libraries: Events, Channels/Queues

Multi-threaded with great
performance out of the box

Photon in actionPhoton in action

import std.net.curl, std.stdio, std.datetime.stopwatch;
import photon;

immutable urls = ["https://...", ...];

void main(){
 startloop(); // init Photon eventloop (to be done lazily soon)
 void spawnDownload(string url, string file) {
 spawn(() => download(url, file));
 }
 StopWatch sw;
 sw.start();
 foreach(url; urls) spawnDownload(url, url.split('/').back);
 runFibers(); // start schedulers and run fibers
 sw.stop();
 writefln("Done: %s ms", sw.peek.total!"msecs");
}

Parallel download of files with std.net.curl, Photon edition

Photon in actionPhoton in action
Parallel download of files with std.net.curl, fiber edition

Sequential: 16 sec

Threads: 5.3 sec

Fibers: 5.9 sec

The test is super noisy (easily ~30%) on the internet

12 files (~1Mb file)

Sequential: 4.4 sec

Threads: 0.46 sec

Fibers: 0.52 sec

3 files (~200Kb each)

We are in the ballpark of dedicated threads

...even when running photon on a single core

Transparent schedulerTransparent scheduler

Fiber.yield needs to happen in some 3rd
party library

Most code calls libc syscall wrapper!

That is precisely the point of our
"integration" ... on Posix-like OS

Shadowing libc syscallsShadowing libc syscalls

extern(C) ssize_t read(int fd, void *buf, size_t count) nothrow
{
 return universalSyscall!(SYS_READ, "READ", SyscallKind.read,
 Fcntl.explicit, EWOULDBLOCK)
 (fd, cast(size_t)buf, count);
}
... // 6 or so more

ssize_t universalSyscall(size_t ident, string name, SyscallKind kind,
 Fcntl fcntlStyle, ssize_t ERR, T...)
 (int fd, T args) nothrow {
 if (currentFiber is null) {
 logf("%s PASSTHROUGH FD=%s", name, fd);
 return syscall(ident, fd, args).withErrorno;
 }
 else { ... MAGIC IS HERE }
}

Put in a shared library linked before the libc

Scheduler (Linux ver.)Scheduler (Linux ver.)
Thread per "Core" (SMT etc.) with affinity mask

All I/O state is static and pre-mapped memory

"Cowboy" lock-free scheduler(s) <-> event loop
interface

Some things are "Research code" quality

Fibers are pinned to thread based on load via
"power of 2 random choices"

Scheduler in picture (v2)Scheduler in picture (v2)

Scheduler in picture (v3?)Scheduler in picture (v3?)

Descriptor stateDescriptor state

Descriptor read stateDescriptor read state

Implementing `poll`Implementing `poll`

Implementing `poll`(2)Implementing `poll`(2)

What about Windows?What about Windows?
Same technique would work...
 but there is no "small" libc

Yet there is User Mode Scheduling
subsystem

Which is kernel-assisted support for
user-mode threads (of sorts...)

WinAPI is 10,000+ API entry points

UMS in 5 secondsUMS in 5 seconds
Under User-Mode we get to create real threads:

1. Never scheduled by the NT kernel scheduler

2. To run them we pick a set of normal dedicated (per core
typically) scheduler threads and run them explicitly

Better then a fiber in that:
1. An OS will automatically switch to scheduler should the
current thread about to block
2. Any blocking event such as pagefault
3. Each thread has 1:1 user:kernel mapping, TLS and other
goodies

UMS in picturesUMS in pictures

UMS in picturesUMS in pictures

UMS in picturesUMS in pictures

UMS in picturesUMS in pictures

It's not all rosesIt's not all roses
On subject, there is

1 interview with Windows Kernel Architect

2 examples with comments like "meh, doesn't
improve performance for simple test"

There was nice video at the BUILD conference
on Windows 8, can't find it anymore

The real kicker:
Not my code nor any of 2 examples actually run on
VirtualBox VM

Enter Alexander IonescuEnter Alexander Ionescu
"A few months ago, as part of looking through the changes
in Windows 10 Anniversary Update for the Windows
Internals 7th Edition book, I noticed that the kernel began
enforcing usage of the CR4[FSGSBASE] feature ... in order
to allow usage of User Mode Scheduling (UMS)."

Freaking great find, Alex!
VirtualBox doesn't propagate that CPU flag

http://www.alex-ionescu.com/?p=340
For future poor souls seeking to enable UMS:

Closing notes on UMSClosing notes on UMS
It is still more efficient to just use normal threads if we do
not do async I/O with completion ports

Photon overrides parts of WinSock like on Linux
to use Overlapped I/O with Completion Ports

UMS thread is ~100x slower to spawn then Fiber

There is a nice option to use RIO sockets, should be super
fast but trickier to get right

The whole thing is x64 only and Ivy Bridge or later CPU

Case study: HTTP serverCase study: HTTP server

Using thin-wrapped Node.js (Nginx) HTTP parser

Add in a few sensible performance optimisations

Fast HTTP is not the main point of Photon

Peper it by a couple of speedhacks
(competion does it as well, so why not)

Using plain std.socket to prove the point

Case study: HTTP serverCase study: HTTP server

void server() {
 Socket server = new TcpSocket();
 server.setOption(SocketOptionLevel.SOCKET, SocketOption.REUSEADDR, true);
 server.bind(new InternetAddress("0.0.0.0", 8080));
 server.listen(1000);
 void processClient(Socket client) {
 spawn(() => server_worker(client));
 }
 while(true) {
 try {
 Socket client = server.accept();
 processClient(client);
 }
 catch(Exception e) {
 writefln("Failure to accept %s", e);
 }
 }
}
void main() {
 startloop();
 spawn(() => server());
 runFibers();
}

HTTP server in Photon runtime

Case study: HTTP serverCase study: HTTP server

void server() {
 Socket server = new TcpSocket();
 server.setOption(SocketOptionLevel.SOCKET, SocketOption.REUSEADDR, true);
 server.bind(new InternetAddress("0.0.0.0", 8080));
 server.listen(1000);
 void processClient(Socket client) {
 new Thread(() => server_worker(client)).start();
 }
 while(true) {
 try {
 Socket client = server.accept();
 processClient(client);
 }
 catch(Exception e) {
 writefln("Failure to accept %s", e);
 }
 }
}
void main() {
 new Thread(() => server()).start();
}

HTTP server in plain D threads

Case study: HTTP serverCase study: HTTP server

import utils.http_server;

class HelloWorldProcessor : HttpProcessor {
 HttpHeader[] headers = [HttpHeader("Content-Type", "text/plain; charset=utf-8

 this(Socket sock){ super(sock); }

 override void onComplete(HttpRequest req) {
 respondWith("Hello, world!", 200, headers);
 }
}

Common part - bare bones HTTP processor

Time to bench threads vs fibers
And a few of top guns from TechEmpower benchmark

And I'm taking DMD to this gunfight

HTTP server benchmarkHTTP server benchmark

0 500 1000 1500 2000 2500 3000 3500 4000
0

50000

100000

150000

200000

250000

300000

0

0.2

0.4

0.6

0.8

1

1.2

Photon vs Threads
HTTP hello

RPS Photon
RPS threaded
Latency 99% Photon
Latency 99% Threaded

Concurrency

HTTP server benchmarkHTTP server benchmark

0 500 1000 1500 2000 2500 3000 3500 4000
0

50000

100000

150000

200000

250000

300000

All thingsRPS
HTTP hello

Photon
D threaded
Fast HTTP Go
Undertow (Java)

Concurrency

HTTP server benchmarkHTTP server benchmark

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

All things latency
HTTP hello

Photon
D threaded
Fast HTTP Go
Undertow (Java)

Concurrency

HTTP server benchmarkHTTP server benchmark

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

All things RSS(mb)
HTTP hello

Photon
D threaded
Fast HTTP Go
Undertow (Java)

Concurrency

Beyond I/OBeyond I/O
Channels or queues got popular with Go

Just label the obvious. Works for MPSC queue

Event, channel, sourceEvent, channel, source
interface Event {
 bool ready();
 void reset(); // typically called by await in Event-loop
}

size_t await(R)(R events)
if(isEvent!ElementType!R)) {
... event loop / scheduler magic
}

Channel is an OutputRange

Source is an InputRange

Event-aware algorithmsEvent-aware algorithms
struct Map(R) {
 R _range;

 bool ready() { _range.ready: }

 auto event(){ return _range.event; }

}

struct Zip(RS...) {
 RS _ranges;

 bool ready() {
 return _ranges.reduce!(true)((a,b) => a && b.ready);
 }

 auto event(){
 return _ranges.map!(x => x.event);
 }
}

Bright futureBright future
Most of the ground work is done on:
 basic I/O, primitive scheduling of Fibers
 transparent integration of C libraries shown to
work

Time to capitalize and expand:
- define composable multiplexing patterns
- "Executors" with Photon's current scheduler as an
option
- Vibe.d on Photon (?)
- expand to cover more syscall surface

Help wanted!Help wanted!

Lots of simple work to test things out!

Even if you are not thrilled to hack on
Windows User Mode Something...

32-bit Linux, FreeBSD and MacOS

BetterC Fibers would be an awesome addition

Current platforms - Windows x64 and Linux x64

https://github.com/DmitryOlshansky/photon

