
 © 2018 All rights reserved.

World’s Fastest File System

�1

Using D as the programming language
of choice for large scale primary

storage system
Liran Zvibel

WekaIO , CEO & Co-Founder

@liranzvibel

 © 2018 All rights reserved. �2

Agenda
o History and background

o WekaIO intro

o Where we stand now

o Mecca unveiled

o Q&A

 © 2018 All rights reserved. �3

History and background

 © 2018 All rights reserved. �4

 © 2018 All rights reserved. �5

Using D for Development
of Large Scale Primary Storage

Liran Zvibel
Weka.IO, CTO
liran@weka.io
@liranzvibel �6

mailto:liran@weka.io

Using D for Development
of Large Scale Primary Storage

Liran Zvibel
Weka.IO, CTO
liran@weka.io
@liranzvibel �7

#DConf2016

mailto:liran@weka.io

 © 2018 All rights reserved. �8

After DConf 2015 …
o David Nadlinger came to the rescue and fixed LDC for us

o Were able to combat optimizations and runtime issues

o Started working towards no-GC runtime

o Code size and complexity started hitting us (symbol length,

compilation time, exe size, etc)

o Johan Engelen stepped in to maintain LDC for us and bridge

our work with DMD

 © 2018 All rights reserved. �9

 © 2018 All rights reserved. �10

Short summary
o The D language is proving to be critical to our success

o WekaIO Matrix is a large and complex project

o D Language allows us to have a single language and codebase

for data path and also control plane

o Introspection, CTFE and meta programming allow us to

manage complexity of the project

o Could improve support for large projects, and also use cases

that require real time (not just java or python that compiles)
around safety and GC

o No programming language is perfect, though!

 © 2018 All rights reserved. �11

WekaIO introduction

 © 2018 All rights reserved. �12

THE PEOPLE

WekaIO Introduction

THE ACCOLADESTHE PARTNERS

WekaIO Matrix is the fastest, most scalable parallel file system for AI and
technical compute workloads that ensures your applications never wait for data.

WHO WE ARE

 © 2018 All rights reserved. �13

Premium Customers

WekaIO demonstrated that it was the only file system that
could fully saturate the GPU cluster. With WekaIO, the data
scientists were able to significantly improve productivity by
removing time consuming data copy tasks into local disks. In
addition WekaIO provided seamless integration to their
massive training system data lake

 © 2018 All rights reserved. �14

 © 2018 All rights reserved. �15

Highest Performance Primary Resilient Storage at Scale

Cloud Object Store

WekaIO

SAN

 Scale-out Parallel NAS

AFA

Pe
rfo

rm
an

ce

Scale and Value

Scale-out NAS

 All Flash NAS

Speed

Simplicity

Scalability

o Primary Resilient Storage

o Massive Scale

– Trillions of Files

– 100's of Petabytes

– Millions of IOPS

– 100’s of GB of BW

o Lowest latency FS,  
higher perf than AFA

o Cloud Economics

 © 2018 All rights reserved. �16

WekaIO Matrix: Full-featured and Flexible

WekaIO Matrix Shared File System

Fully Coherent POSIX File System That Delivers Local File System Performance

Distributed Coding, More Resilient at Scale, Fast Rebuilds, End-to-End DP

Instantaneous Snapshots, Clones, Tiering to S3, Partial File Rehydration

InfiniBand or Ethernet, Hyperconverged or Dedicated Storage Server

Public or Private

S3 Compatible

Bare Metal Cloud Native

 © 2018 All rights reserved. �17

Focused On the Most Demanding Workloads 

• Semiconductor verification

• Manufacturing (CFD)

• Software compilation

• Autonomous cars

• Machine Learning & AI

• IoT

• Genomics sequencing and analytics

• Drug discovery

• Microscopy

• Business analytics (SAS Grid, SAP HANA)

• Algorithmic trading

• Risk analysis (Monte Carlo simulation)

• DevOps

• Real-time analytics

• Batch analytics

• Media rendering

• Transcoding

• Visual Effects (VFX)

 © 2018 All rights reserved. �18

Why Data Locality is Irrelevant
o Local copy architectures (e.g. Hadoop, or caching solutions) were developed when

1GbitE and HDDs were standard

o Modern networks on 10Gbit Ethernet are 10x faster than SSD

o It is much easier to create distributed algorithms when locality is not important

o With right networking stack, shared storage is faster than local storage

Time it takes to Complete a 4KB Page Move

SSD Read

SSD Write

10Gbit (SDR)

100Gbit (EDR)

0 25 50 75 100

Microseconds

 © 2018 All rights reserved. �19

Software Architecture
o Runs inside LXC container for

isolation

o SR-IOV to run network stack and

NVMe in user space

o Provides POSIX VFS through

lockless queues to WekaIO driver

o I/O stack bypasses kernel

o Scheduling and memory

management also bypass kernel

o Metadata split into many Buckets –

Buckets quickly migrate ➔ no hot
spots

o Support, bare metal, container &
hypervisor

Clustering

Balancing

Failure Det.

& Comm.

IP Takeover

Application
Application

Application
Application

Frontend

SSD Agent

H/W

User
Space

KernelWeka DriverTCP/IP Stack

Distributed

FS “Bucket”Distributed

FS “Bucket”Distributed

FS “Bucket”Distributed

FS “Bucket”Distributed
FS “Bucket”

Data

Placement

FS

Metadata

TieringBa
ck

en
d

Networking

NFS

S3

SMB

HDFS

 © 2018 All rights reserved. �20

Actual Results from Deep Learning Bake-off
7x Faster 1MB Throughput

1GB/sec

7.1GB/sec

3.3x Better FS Traverse (Find)

6.5

Hours

2 Hours

5.5x Better ‘ls” Directory

55 seconds

10 seconds

2.6x Better 4KB IOPS/Latency

61K IOPS

670µsec latency

165K IOPS

271µsec latency

 © 2018 All rights reserved. �21

Fastest File System

SPEC 2014 Public Posted Results

0

0.75

1.5

2.25

3

60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

IBM Spectrum Scale NetApp WekaIO

La
te

nc
y

(m
ilis

ec
on

d)

1200
Concurrent Software Builds

WekaIO does 2x
the workload of
IBM Spectrum
Scale

Running from
RAM cache

 © 2018 All rights reserved. �22

Current state of the project

 © 2018 All rights reserved. �23

Some statistics
o 1232 .d files

o About 280 KLOC

o About 2k ‘static if’ statements

o 20 ‘static foreach’ statements

o Probably many more foreach indeed static

o 115 ‘mixin template’

o About 27,500 explicit template instantiations (with ‘!’)

o 30 mentions of ‘__ctfe’ in code, countless usage of actual

 © 2018 All rights reserved. �24

Anecdotal cool example — verifying ABI for RPC
o Enterprise systems must support seamless upgrades

o Upgrades are performed as a “rolling”process

o Two versions must know whether RPC is ABI compatible or

not.

o Standard mangling is not enough, as types may have

changed between versions

o Introspection allows our no-IDL RPCs to automatically verify

ABI compatibility by recursively opening structs and hashing
the whole result

 © 2018 All rights reserved. �25

Anecdotal pain point — delegates, scope and GC
o GC cannot be used in a real time, low latency based system

o Delegates generate GC by default, as their scope may

escape the current one (we cannot know that the stack
remains in the scope)

o Even simple std.algorithm examples, where all executing is
recursive and would stay on the stack force GC allocations

o No effective way of marking such delegates as scoped so
this won’t happen

 © 2018 All rights reserved. �26

What do we care about?
o Safety

o Performance

o Brevity

o Ability to manage complexity

o What we don’t need and others do : “First 5 minutes!”

o Community must get D easier to start with

 © 2018 All rights reserved. �27

Mecca Unvailed

 © 2018 All rights reserved. �28

Again, some history
o Work started in August 2016 by Tomer Filiba

commit 51182a64360518aa4cbabfe1ce99561d2584378a
Author: Tomer Filiba <tomer@weka.io>
Date: Mon Aug 29 23:50:53 2016 +0300

 Mecca: make weka's infrastructure great again

o Moved to external repository May 2017

o Shachar Shemesh started working full time June 2017

o Mecca is our OS implementation, sans IO and networking
modules

mailto:tomer@weka.io
http://airmail.calendar/2018-08-29%2023:50:53%20GMT+3

 © 2018 All rights reserved. �29

Some statistics
o 3 major components: Reactor, lib, containers

o 20575 LOC: 8361 in reactor; 7782 in lib, 4432 in containers

o Reactor — scheduling fibers coordinating (synchronizing)

o non-GC containers — Arrays, pools, queues, linked lists

o Lib — introspection, division, no-gc exception handling,

CTFE enabled hashing, non-gc interators and algs, string
and time manipulation.

 © 2018 All rights reserved. �30

