
1 / 36

Binding Rvalues to ref Parameters
Prepared for DConf 2019

Andrei Alexandrescu, Ph.D.

andrei@erdani.com

May 10, 2019

andrei@erdani.com


Credits

2 / 36

• Manu Evans: raised the issue, authored DIP

1016

• Walter Bright: specification, implementation

details



Motivation

3 / 36

• Two reasons for ref in function signatures:

1. Function wants to manipulate a parameter

2. Function wants to take/return a large

object efficiently

• Problem: the language only caters for (1)



Efficient call/return protocol

4 / 36

• Often better to traffic large/elaborate objects

by pointer

• Using actual pointers clunky and unsafe

• Often efficiency is a primary concern, not side

effects

• Yet the language is worried that side effects

will not last



Example

5 / 36

struct Point {

long x, y, z, color;

...

}

Point p;

Point origin();

double distance(ref const Point, ref const Point);

...

// desired: auto n = distance(p, origin());

auto t = origin();

auto n = distance(p, t);



Workaround: Overloading FTW!

6 / 36

// using struct Point defined above

double distance(ref const Point p1, ref const Point p2)

{ ... implementation ... }

double distance(const Point p1, ref const Point p2)

{ return distance(p1, p2); }

double distance(ref const Point p1, const Point p2)

{ return distance(p1, p2); }

double distance(const Point p1, const Point p2)

{ return distance(p1, p2); }

• Scales with 2n, oi!



Related Work

7 / 36

• Binding rvalues to const T& fundamental in

C++

• So tight, you can’t overload on l/rvalues

• Part of the motivation for T&&

• Rust can bind rvalues to ref with syntax on

the caller side, e.g. fun(&mut 42)



8 / 36

So let’s relax the rule!

ref shall accept

rvalues!



Obvious Issue

9 / 36

• Adapted from [Stroustrup D&E]

void bump(ref long x) { ++x; }

...

int counter;

bump(counter);

• int to long implicit conversion

• If this compiled, counter would be

unmodified!

• Fragility, too: changing types in code that

works!



Too Much Binding? No Problem!

10 / 36

• New rule!

• “Rvalues bind to ref, EXCEPT when they

originate from lvalues by means of implicit

conversion.”

• Introducing exceptions is worrisome. . .



. . . And Indeed. Consider:

11 / 36

struct Widget {

public double price;

...

}

void applyDiscount(ref double p) {

p *= 0.9;

}

...

Widget w;

w.price = 100;

w.applyDiscount;

assert(w.price == 90);



Make It a Property

12 / 36

struct Widget {

private double _price;

double price() { return price; }

void price(double p) { assert(p > 0); price = p; }

...

}

...

Widget w;

w.price = 100;

w.applyDiscount;

assert(w.price == 90); // oops



But Wait, There’s More

13 / 36

• Functions and nonmember properties

int x = global; // variable or function call

global = 42; // variable or function call

fun(global); // will this change global or not?

• Even worse with indexing operators

Tensor t;

t[0] = 42; // ref or opIndexAssign

t[0] += 7; // ref or opIndexOpAssign

fun(t[0]); // will this change t[0] or not?

• All generic code will need to mind this



The Problem

14 / 36

• Fundamentally, identical syntactic forms

differ radically in semantics

◦ Caller passes a modifiable expression,

e.g. t[1]

◦ Callee changes its parameter per the

contract

◦ Both play “nice” but protocol fools both

• Surprising bugs

• Fragility in maintenance



Proposal

15 / 36



Plan

16 / 36

• Figure out matching rules

• Eliminate “bad” matches

• Devise code generation



Parameter matching rules (current)

17 / 36

• Four levels of matching params to args:

1. no match

2. match with implicit conversions

3. match via qualifier conversion

4. exact match

• Compute matching for each argument

• Take the minimum for the function

• Changing this list would be a major hurdle



Assignable Type & Expression

18 / 36

• Definition: We call a type T assignable iff T is

unqualified or has the shared qualifier.

• Definition: We call an expression e assignable

iff there exists some expression e1 such that

the syntactic form (e) = (e1) is a valid

expression.



Recall Qualifier Conversion DAG

19 / 36

• Only modifiable quals are mutable and shared

mutable

const

const inout

inout immutable

const inout shared

const shared

inout shared

shared



Fork In The Road: Proposal 1

20 / 36

• To bind expression e of type U to ref T:

• If e assignable expression and T assignable

type:

◦ Return existing algorithm.

• Else run existing algorithm assuming e lvalue,

get level x

◦ If x = 1, return level 1 (no match).

◦ Else return 2 (match via conversion).



Intuition

21 / 36

• Simple!

• Eliminate confusing cases of assignability

• Make binding to ref count as a conversion

◦ No C++ mistake

◦ Can still overload on ref



Aftermath

22 / 36

• Naturally eliminates a large class of bugs:

void bump(ref long x) { ++x; }

...

int counter;

bump(counter); // nope, assignable

bump(100L); // okay, level 2

bump(100); // okay, level 2

• Danger when both caller and callee wrongly

believe mutation will occur



Overloading On ref Works. . .

23 / 36

void fun(ref int);

void fun(int);

fun(42); // level 2 vs level 4

int x = 42;

fun(x); // level 4 vs level 2



. . .With Quirks

24 / 36

void fun(ref int);

void fun(int);

const int x;

fun(x); // level 2 vs level 2, ambiguous

void gun(ref const int);

void gun(int);

const int gun();

fun(gun()); // level 2 vs level 2, ambiguous



Proposal 2

25 / 36

• No changes to parameter-level match!



Change Function-Level Matching!

26 / 36

• Run algorithm once assuming all lvalues, get

all matches

• If one match, return it

• If more than one match, discard and defer to

the old function-level algorithm



Aftermath

27 / 36

• Eliminates the confusing cases at argument

matching level

• Backwards compatible

• ref and value interchangeable

• Complicated/clunky rules

◦ Really adds a new matching level without

adding one

• Slow (probably not a practical problem)



Code Generation

28 / 36



Gode Generation

29 / 36

• Lifetime of temporaries large part of proposal

• Intermingled with order of evaluation, too

• Problem: both were underspecified to start

with

◦ Also, quite complex

• DIP grew significantly



Solution

30 / 36

• Migrate order of evaluation to spec

• Migrate lifetime of temporaries to spec

• (Just document what’s there!)



DIP says

31 / 36

When binding to ref params,

temporaries follow same rules as

for binding to value params



Life, Simplified

32 / 36

• Huge simplification on all sides

◦ Implementation

◦ Understanding

◦ Use

• Rules were complex to start with

◦ “End of full expression except for the

right-hand side of conditional expressions”

◦ But. . . already implemented and in use



Lesson Learned: Proper Motivation is Key

33 / 36

• Motivation is the rocket fuel pushing the DIP

forward

• “Chesterton’s Fence” essential, too

◦ Understanding the situation allows for

solutions



Lesson Learned: Integrate Within

34 / 36

• Language is underspecified

• A DIP sadly needs to fix some of the spec, too

• Sometimes need to read the actual

implementation

• Key: improve spec first, build DIP on it!



Lesson Learned: Be Rigorous

35 / 36

• Approximate spec + approximate DIP = bad

• DIP should leave no room for interpretation

• The DIP will be implemented by a vengeful ex



36 / 36

Thank You!


	Credits
	Motivation
	Efficient call/return protocol
	Example
	Workaround: Overloading FTW!
	Related Work
	
	Obvious Issue
	Too Much Binding? No Problem!
	…And Indeed. Consider:
	Make It a Property
	But Wait, There's More
	The Problem
	Proposal
	Plan
	Parameter matching rules (current)
	Assignable Type & Expression
	Recall Qualifier Conversion DAG
	Fork In The Road: Proposal 1
	Intuition
	Aftermath
	Overloading On `11`=12lstlanguage=Dref Works…
	…With Quirks
	Proposal 2
	Change Function-Level Matching!
	Aftermath

	Code Generation
	Gode Generation
	Solution
	DIP says
	Life, Simplified
	Lesson Learned: Proper Motivation is Key
	Lesson Learned: Integrate Within
	Lesson Learned: Be Rigorous
	


