
Lessons from a DSL where
all you have is ranges

John Loughran Colvin

In the beginning

In the beginning
There were variables and functions:

In the beginning

alias add = (a, b) => a + b;
auto x = 2;
auto y = 2;
auto z = add(x, y);

There were variables and functions:

In the beginning

alias add = (a, b) => a + b;
auto x = 2;
auto y = 2;
auto z = add(x, y);

There were variables and functions:

And it was … ok.

Just after the beginning

Just after the beginning
There were more variables:

Just after the beginning

alias add = (a, b) => a + b;
auto x0 = 2;
auto y0 = 2;
auto z0 = add(x0, y0);
auto x1 = 3;
auto y1 = 3;
auto z1 = add(x1, y1);

There were more variables:

Just after the beginning

alias add = (a, b) => a + b;
auto x0 = 2;
auto y0 = 2;
auto z0 = add(x0, y0);
auto x1 = 3;
auto y1 = 3;
auto z1 = add(x1, y1);

There were more variables:

… and it was starting to feel a bit off

And then

And then
There were more functions:

And then

alias add = (a, b) => a + b;
alias timesBy2 = a => a << 1;
auto x0 = 2;
auto y0 = 2;
auto z0 = add(x0, y0);
auto x1 = 3;
auto y1 = 3;
auto z1 = add(x1, y1);
auto ζ = timesBy2(add(z0, z1));

There were more functions:

What’s the problem?

What’s the problem?

Iteration
&

Composition

What a Range?

What a Range?
An aggregate that defines empty, front and popFront

What a Range?
An aggregate that defines empty, front and popFront

Do we have anything? What do we have? Go to the next one.

What a Range?

iota(100)
 .map!(i => i * rand())
 .filter!(i => i % 2)
 .writeln;

An aggregate that defines empty, front and popFront

Do we have anything? What do we have? Go to the next one.

What a Range?

iota(100)
 .map!(i => i * rand())
 .filter!(i => i % 2)
 .writeln;

An aggregate that defines empty, front and popFront

Do we have anything? What do we have? Go to the next one.

There are other primitives for going backwards, getting an element by
offset, saving the current position.

For C++ programmers, it’s like a begin/end pair of iterators.

What’s our problem?

What’s our problem?

Iteration
&

Composition

Goal

• We wanted to allow people who are not currently programmers to
do bulk data processing and glue systems together.

• The usual slice-and-dice work that happens in Excel every day, but
without the limitations of Excel and the horrors that grow to work
around those limitations.

• We needed a language that was easy to use, hard to abuse and
expressed the thought at hand clearly.

Why not just use Python?
Or Equivalent

Why not just use Python?

• Imperative programming is the hard part, not the easy part.

Or Equivalent

Why not just use Python?

• Imperative programming is the hard part, not the easy part.

• Mutable state opens up the potential for monstrous code and
awful bugs

Or Equivalent

Why not just use Python?

• Imperative programming is the hard part, not the easy part.

• Mutable state opens up the potential for monstrous code and
awful bugs

• No proper pipeline programming (unless we effectively re-
implement what we want as a DSL inside python)

Or Equivalent

Why not just use Python?

• Imperative programming is the hard part, not the easy part.

• Mutable state opens up the potential for monstrous code and
awful bugs

• No proper pipeline programming (unless we effectively re-
implement what we want as a DSL inside python)

• These languages weren’t designed for trivial interoperability with
other systems (but that’s another talk…)

Or Equivalent

What did we do?

What did we do?
• Took code.dlang.org/packages/pegged and created a grammar with

variable definitions, arithmetic, array literals etc.

https://code.dlang.org/packages/pegged
https://code.dlang.org/packages//taggedalgebraic
https://code.dlang.org/packages//taggedalgebraic

What did we do?
• Took code.dlang.org/packages/pegged and created a grammar with

variable definitions, arithmetic, array literals etc.

• Created a Variable type (was minimally wrapped code.dlang.org/
packages/taggedalgebraic, now totally custom) supporting some basics
like string, delegate, int, Variable[string], Variable[] plus an open-ended
variant type.

https://code.dlang.org/packages/pegged
https://code.dlang.org/packages//taggedalgebraic
https://code.dlang.org/packages//taggedalgebraic

What did we do?
• Took code.dlang.org/packages/pegged and created a grammar with

variable definitions, arithmetic, array literals etc.

• Created a Variable type (was minimally wrapped code.dlang.org/
packages/taggedalgebraic, now totally custom) supporting some basics
like string, delegate, int, Variable[string], Variable[] plus an open-ended
variant type.

• Created a parse-tree-walking interpreter to recursively build Variables
to get the result.

https://code.dlang.org/packages/pegged
https://code.dlang.org/packages//taggedalgebraic
https://code.dlang.org/packages//taggedalgebraic

What did we do?
• Took code.dlang.org/packages/pegged and created a grammar with

variable definitions, arithmetic, array literals etc.

• Created a Variable type (was minimally wrapped code.dlang.org/
packages/taggedalgebraic, now totally custom) supporting some basics
like string, delegate, int, Variable[string], Variable[] plus an open-ended
variant type.

• Created a parse-tree-walking interpreter to recursively build Variables
to get the result.

• The next step was going to be getting array expressions really sorted, e.g.
a = b + c where all are arrays, including index matching for indexed data.

https://code.dlang.org/packages/pegged
https://code.dlang.org/packages//taggedalgebraic
https://code.dlang.org/packages//taggedalgebraic

And then I went on holiday

And then I went on holiday

And then I got ill

And then I went on holiday

And then I got ill

And then I came back…

And everything was
different!

And everything was
different!

• Added first-class support for ranges.

And everything was
different!

• Added first-class support for ranges.

• Wrapped a large chunk of the D standard library.

And everything was
different!

• Added first-class support for ranges.

• Wrapped a large chunk of the D standard library.

• A project was being started to try and use the language in an
important piece of day-to-day operations.

And everything was
different!

• Added first-class support for ranges.

• Wrapped a large chunk of the D standard library.

• A project was being started to try and use the language in an
important piece of day-to-day operations.

• Later on, we decided that maybe modules, if/else, scopes, not
overwriting live stack frames and so on were also useful features.

SIL Examples

alias add = (a, b) => a + b;
alias timesBy2 = a => a << 1;
auto x0 = 2;
auto y0 = 2;
auto z0 = add(x0, y0);
auto x1 = 3;
auto y1 = 3;
auto z1 = add(x1, y1);
auto ζ = timesBy2(add(z0, z1));

SIL Examples

add = (a, b) => a + b
timesBy2 = a => a * 2
x0 = 2
y0 = 2
z0 = add(x0, y0)
x1 = 3
y1 = 3
z1 = add(x1, y1)
q = timesBy2(add(z0, z1))

SIL Examples

add = (a, b) => a + b
timesBy2 = a => a * 2
xs = [2, 3]
ys = [2, 3]
zs = zip([xs, ys])
 |> map(p => add(p[0], p[1]))
q = zs
 |> sum
 |> timesBy2

Ranges Save the Day

weeklyClose = readCsvTable(“dailyOHLC.csv”)
 |> applyToCol(“date”, parseDates)
 |> byRow
 |> filter(x => x.date.dayOfWeek == Day.friday)
 |> map(x => [x.date, x.close])
 |> tableFromPairs
 |> writeCsv(“weeklyClose.csv”)

We didn’t have much to work with, but phobos ranges and algorithms
are great.

Ranges Save the Day
We didn’t have table literals, only mkTable that returns an empty
table and addEntry

Ranges Save the Day

tableFromPairs(a) => a
 |> fold(
 (newT, p) => newT
 |> addEntry(p[0], p[1]),
 mkTable()
)

We didn’t have table literals, only mkTable that returns an empty
table and addEntry

Ranges Save the Day

tableFromPairs(a) => a
 |> fold(
 (newT, p) => newT
 |> addEntry(p[0], p[1]),
 mkTable()
)

We didn’t have table literals, only mkTable that returns an empty
table and addEntry

superSecretHedgeFundTable = [
 [“a”, 1],
 [“b”, 2],
 [“c”, 3]] |> tableFromPairs

Ranges Save the Day
We didn’t have any builtin functions that operated on the values of a
table

Ranges Save the Day

apply(tIn, func) => tIn |> keyValPairs
 |> fold(
 (tOut, p) => tOut
 |> replaceEntry(p.key,
 func(p.value)),
 tIn
)

{“a” : 3, “b” : 4} |> apply(x => x * 2)
// gives {“a” : 6, “b” : 8}

We didn’t have any builtin functions that operated on the values of a
table

Ranges Save the Day
No proper dataframes? No problem, e.g.

Ranges Save the Day

getRow(t, i) => {
 ks = keys(t)
 vs = values(t)
 in zip([ks, vs |> map(v => v[i])])
 |> tableFromPairs
}

{“a” : [3, 4], “b” : [7, 8} |>getRow(1)
// gives {“a” : 4, “b” : 8}

No proper dataframes? No problem, e.g.

Don’t be clever

split(hay, needle) => (
 i => [hay[0 : i], hay[i : $]]
)(hay |> indexOf(needle) |> value)

Locals and scopes are quite nice

Don’t be clever

split(hay, needle) => (
 i => [hay[0 : i], hay[i : $]]
)(hay |> indexOf(needle) |> value)

Locals and scopes are quite nice

split(hay, needle) => {
 i = hay |> indexOf(needle) |> value
 in [hay[0 : i], hay[i : $]]
}

v.s.

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 return r.map!(x => x * v);
}

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 return r.map!(x => x * v);
}

We can easily create lambdas that capture context, (just a struct
with an opCall).

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 return r.map!(x => x * v);
}

This is not a problem with capturing by value in lambdas, it’s a problem
with map

We can easily create lambdas that capture context, (just a struct
with an opCall).

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 static struct Callable {
 T v;
 auto opCall(ElementType!R x) {
 return x * v;
 }
 }
 auto c = Callable(x);
 return r.map!c;
}

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 static struct Callable {
 T v;
 auto opCall(ElementType!R x) {
 return x * v;
 }
 }
 return r.map!(Callable(v));
}

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 static struct Callable {
 T v;
 auto opCall(ElementType!R x) {
 return x * v;
 }
 }
 static Callable c;
 c = Callable(v);
 return r.map!c;
}

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 static struct Callable {
 T v;
 auto opCall(ElementType!R x) {
 return x * v;
 }
 }
 static Callable c;
 c = Callable(v);
 return r.map!c;
}
auto a = r.save.scale(3);
auto b = r.save.scale(4);
assert(a == r.scale(3)); //nope…

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 zip(r, repeat(v)).map!(p => p[0] * p[1]);
}

auto scale(R, T)(R r, T v)
if (isInputRange!R
 && is(typeof(r.front * v))) {
 zip(r, repeat(v)).map!(p => p[0] * p[1]);
}

What are they bad for?

What are they bad for?

• Good at walking, not good at wandering

What are they bad for?

• Good at walking, not good at wandering

• Good performance is reliable when the code is trivial. Theoretical
savings, practical catastrophes

What are they bad for?

• Good at walking, not good at wandering

• Good performance is reliable when the code is trivial. Theoretical
savings, practical catastrophes

• Writing your own ranges is really, really interesting.

std.range.generate
?

std.range.generate
?

• I didn’t know about it until today.

std.range.generate
?

• I didn’t know about it until today.

• Can’t skip, can’t stop.

betterGen

auto map(alias foo, R)(R r)
{
 return r.betterGen!(R, typeof(foo(ElementType!R.init)),
 (s) { with (s)
 {
 if (input.empty)
 return stop;
 return val(foo(input.front))
 .popInput;
 }});
}

betterGen
auto filter(alias foo, R)(R r)
{
 return r.betterGen!(R, ElementType!R,
 (s) { with (s)
 {
 if (input.empty)
 return stop;
 auto inFront = input.front;
 if (foo(inFront))
 return val(inFront)
 .popInput();
 return nothing
 .popInput;
 }});
}

betterGen
// YES THIS IS NONSENSE, I KNOW
auto chunkBy(alias foo = (a, b) => a == b, R)(R r)
{
 return IterState!(R, /*something*/,
 (s)
 {
 if (s.input.empty)
 return s.stop;
 auto inFront = s.input.front;
 return s.val(
 s.input
 .until!(x => !foo(inFront, x)));
 }
}

Implicit Conversions

auto blah()
{
 if (rand() % 2)
 return null;

 if (auto a = rand() % 2)
 return nullable(iota(3).map!(x => x + a));

}

Types of iteration

A commonly described split:

‣ Internal

‣ External

Internal Iteration

Internal Iteration

[1, 2, 3].forEach(x => console.log(x))

The iteration happens inside the code of forEach in JavaScript:

Internal Iteration

[1, 2, 3].forEach(x => console.log(x))

The iteration happens inside the code of forEach in JavaScript:

np.array([1, 2, 3]).sum()

sum in numpy (Python):

Internal Iteration

[1, 2, 3].forEach(x => console.log(x))

The iteration happens inside the code of forEach in JavaScript:

np.array([1, 2, 3]).sum()

sum in numpy (Python):

struct S {
 int opApply(int delegate(ref int a) dg) {
 foreach (i; 0 .. 5) dg(i);
 return 0;
 } }
foreach (i; S()) writeln(i);

opApply in D:

External Iteration

External Iteration

std::vector<int>::iterator begin, end;

The iteration happens outside the code of a pair of iterators in C++:

External Iteration

std::vector<int>::iterator begin, end;

The iteration happens outside the code of a pair of iterators in C++:

[x * 5 for x in range(30)]

A generator in python:

a range of directory entries in D

External Iteration

std::vector<int>::iterator begin, end;

The iteration happens outside the code of a pair of iterators in C++:

[x * 5 for x in range(30)]

A generator in python:

dirEntries(“/usr/lib/”, “libphobos*.so.*”)dirEntries(“/usr/lib/”, “libphobos*.so.*”);

a range of directory entries in SIL

External Iteration

std::vector<int>::iterator begin, end;

The iteration happens outside the code of a pair of iterators in C++:

[x * 5 for x in range(30)]

A generator in python:

dirEntries(“/usr/lib/”, “libphobos*.so.*”)

Which is this?
foreach (x; iota(100))
 writeln(x);

Or this?
auto a = [1, 2, 3];
for (int i = 0; i < N, ++i)
 printf(“%i\n”, a[i]);

Which is this?
foreach (x; iota(100))
 writeln(x);

auto a = [1, 2, 3];
for (int i = 0; i < N, ++i)
 printf(“%i\n”, a[i]);

Which is this?
foreach (x; iota(100))
 writeln(x);

auto a = [1, 2, 3];
for (int i = 0; i < N, ++i)
 printf(“%i\n”, a[i]);

They are clearly both internal and external

‣ The loop is iterating

‣ The iterable is being iterated

Internal
“Sure, I know how to iterate over my stuff, I even know some different
ways, just tell me what you want done and I’ll make it happen”

Great when you know everything you want to do per-element up-front.

Internal
“Sure, I know how to iterate over my stuff, I even know some different
ways, just tell me what you want done and I’ll make it happen”

“I have no idea what you want, don’t even try and explain it me. Just
tell me when you want me to spit out the next item”

External

Great when you know everything you want to do per-element up-front.

Composable, you can build up the work in pieces

Internal

“I have no idea what you want, don’t even try and explain it me. Just
tell me when you want me to spit out the next item”

External

Composable, you can build up the work in pieces

Internal

“I have no idea what you want, don’t even try and explain it me. Just
tell me when you want me to spit out the next item”

External

Composable, you can build up the work in pieces

“I iterate things”

Internal

External

“I iterate things”

Internal

External

“I iterate things”

“I can be iterated”

Most Ranges are Both

• They iterate a source range (internal)

• They are iterable (external)

• Internal aspect is trivial for map, not trivial for e.g. filter or
cache

OMG! Who cares?

OMG! Who cares?

• Internal iteration is a closed model

OMG! Who cares?

• Internal iteration is a closed model

• External iteration is composable

OMG! Who cares?

• Internal iteration is a closed model

• External iteration is composable

• This is the same pattern as many things in D: allowing choices to
be pushed further and further up the call stack.

OMG! Who cares?

• Internal iteration is a closed model

• External iteration is composable

• This is the same pattern as many things in D: allowing choices to
be pushed further and further up the call stack.

• This is also the unix philosophy. Do one thing and do it well.

OMG! Who cares?

• Internal iteration is a closed model

• External iteration is composable

• This is the same pattern as many things in D: allowing choices to
be pushed further and further up the call stack.

• This is also the unix philosophy. Do one thing and do it well.

• Everything else is someone else’s problem.

double[] vecMul(double[] a, double[] b)
in (a.length == b.length)
{
 auto r = new double[](a.length);
 r[] = a[] * b[];
 return r;
}

How many things does this function do?

void vecMul(double[] a, double[] b, double[] r)
in (a.length == b.length)
in (r.length == b.length)
{
 r[] = a[] * b[];
 return r;
}

How many things does this function do?

auto vecMul(double[] a, double[] b)
in (a.length == b.length)
{
 return zip(a, b)
 .map!(t => t.rename!(“elA”, “elB”))
 .map!(p => elA * elB);
}

How many things does this function do?

This effect is fractal

What if with was an
expression?

iota(1000)
 .enumerate
 .map!(p => with(p) index + value)

iota(1000)
 .enumerate
 .map!(expand!((index, value) => index + value))

Come work at Symmetry Please.

Come work at Symmetry Please.

Now.

Come work at Symmetry Please.

Now.

Please.

