
1A Season with D: SAoC Report

A Season with

Tales of a Symmetry Autumn of Code participant

2A Season with D: SAoC Report

● Promoted by the D Language Foundation and Symmetry
Investments

● Period of 4 months: September 2018 – January 2019

● One milestone each month

● 3 Participants, each one working on a different project

Objective?

Improving the D Ecosystem

Symmetry Autumn of Code

3A Season with D: SAoC Report

About me
● CS student in Italy, 24 years old

● Experienced in C, Python, some Java. Met D while trying to
expand my experience in programming languages

● Before SAoC: ~1 year of D experiments

● Fond of language theory, concurrent program verification,
networking protocols

● Looking forward to contribute to an Open Source codebase

4A Season with D: SAoC Report

HTTP/2 in Vibe.d
● Work on the experimental vibe-http repository.

● Mentor: Sönke Ludwig

● Project idea found on Dlang’s wiki page for GSoC
2018.

● HTTP/2 implementation had to be written almost from
scratch.

HTTP/2? What does that 2 stand for?

5A Season with D: SAoC Report

HTTP/1 vs HTTP/2
Stateless:

One request per TCP
Connection.

Stateful:
Connection state is mantained

between requests.

Cleartext protocol:
Headers and data are transmitted

without further serialization.

Binary Protocol:
Frames are serialized using the
HPACK algorithm and trasmitted

as binary.

Relies on TCP to implement flow
control at the packet level.

Integrates flow control at the
Frame level using a connection

window.

Ordered and blocking. Multiplexed using the concept of
Streams.

6A Season with D: SAoC Report

Work Plan
HTTP/2 is composed roughly of 3 logic blocks:

● HTTP/1 to HTTP/2 Protocol switching

● The HPACK header compression algorithm

● Asynchronous handling of HTTP/2 Streams

Each block became a milestone in my work plan.

7A Season with D: SAoC Report

Milestones
Milestones acted as checkpoints to ensure us

participants had a plan to follow.

● Planned in advance while proposing an application to
SAoC, with the help of our respective mentors

● Progress on a milestone was reported month by
month

● Proposed by applicants, reviewed by organizers and
mentors

8A Season with D: SAoC Report

Working with a mentor
● Discussion topics: bugs found, implementation issues,

high-level strategy.

● Means of communication: e-mails and GitHub PRs.

● Difficulties: adapting to the mentor’s development
cycle.

● Benefits: constant communication improved focus and
commitment towards a complete project realization.

9A Season with D: SAoC Report

Workflow
September – October 2018

Dedicated to:

● Studying the available resources regarding HTTP/2,
mainly RFC 7540 and RFC 7541.

● Reading through vibe’s HTTP module to familiarize
with it.

● Discussing an high-level strategy with my mentor.

Milestone: HTTP/1 to HTTP/2 Protocol Switching

10A Season with D: SAoC Report

Workflow
October – November 2018

Dedicated to:

● Implementing the HPACK header compression
algorithm.

● Digging deep into Phobos modules, especially
std.range, std.algorithm and std.traits.

● Testing the obtained HPACK implementation.

Milestone: HPACK header compression algorithm

11A Season with D: SAoC Report

Workflow
November – December 2018

Dedicated to:

● Devise an efficient strategy for asynchronous
management of HTTP/2 Streams

● Compare performance and logic of different
implementations in various languages (C, C++, Go)

● Testing, bug fixing, testing, bug fixing, ...

Milestone: HTTP/2 Streams and Multiplexing

12A Season with D: SAoC Report

Workflow
December 2018 - Ongoing

Work that is still being pursued:

● Complete the review of HTTP/2 Streams and
Multiplexing so that it can be merged in vibe-http

● Profile web server performance and memory usage,
trying to minimize dynamic allocations and remove as
much GC-dependent code as possible.

● Testing, bug fixing, testing, bug fixing, ...

13A Season with D: SAoC Report

A Season with D: SAoC Report

Accomplishments

14A Season with D: SAoC Report

Accomplishments
The introduction of HTTP/2 in vibe-http is geared towards
building a new HTTP module to be merged in Vibe.d.

Modifying the existing codebase is still going to be a long
process and has to be carried out with patience and care.

Yet, the new HTTP server lives, and talks with HTTP/1
and HTTP/2 clients succesfully...

...in an experimental way.

15A Season with D: SAoC Report

Accomplishments
Protocol Switching: HTTP/2 is enabled transparently for cleartext HTTP
connections and requires minimal changes for HTTPS ones.

void main() { /** Example of HTTP/2 webserver initialization using TLS **/

HTTPServerSettings settings;
settings.port = 8000;
settings.bindAddresses = ["127.0.0.1"];

/** TLS Context initialization **/
 settings.tlsContext = createTLSContext(TLSContextKind.server);

settings.tlsContext.useCertificateChainFile("server.crt");
settings.tlsContext.usePrivateKeyFile("server.key");

settings.tlsContext.alpnCallback(http2Callback); /** Setup ALPN to accept HTTP/2 **/

listenHTTP!requestHandler(settings); /** start the event loop **/
 runApplication();
}

16A Season with D: SAoC Report

Accomplishments
HPACK module: a simple interface based on std.range which
can encode and decode arbitrarily long chunks of headers.

● Can be used as standalone library (outside vibe-http)

● The interface is @safe and almost @nogc, if it wasn’t for
those exceptions…

● Lightweight on CPU and memory resources, protecting
from possible DoS attacks which exploit the heavy
computational cost of the encoding algorithm.

17A Season with D: SAoC Report

Accomplishments
HTTP/2 message exchanges:

● Handling multiple HTTP requests over the same connection
by using asynchronous handlers based on Vibe.d’s fibers.

● Complying with flow control restrictions and manage data
dispatch while responding to other requests, by performing
each dispatch on a separate task.

● Enforcing protocol correctness by mantaining a connection
state, enforcing compliance with protocol rules defined in
RFC 7540.

18A Season with D: SAoC Report

Missing Bricks
● Review of the PR regarding stream multiplexing and

flow control logic has yet to be completed, and will
probably undergo some changes.

● Server Push, an additional feature of HTTP/2 which
allows a server to send data without a previous
request. Not a requirement for HTTP/2 functionality:
postponed.

● Testing, bug fixing, testing, bug fixing, …

19A Season with D: SAoC Report

Lessons Learned
D for network protocols

Implementing HTTP/2 required application of some of the
language features:

● Ranges as a serialization interface.

● Meta-Programming through mixins, CTFE and ADTs.

● Abstract concurrency paradigm based on Tasks.

20A Season with D: SAoC Report

Ranges
D for network protocols

Ranges proved to be a powerful abstraction to handle data
serialization.

● HPACK interface: based on std.range and std.algorithm.

● Methods templatized on InputRange and OutputRange,
usable outside of the HTTP/2 module.

● Support custom allocators by using stdx.allocator.

● Could be @nogc...

21A Season with D: SAoC Report

import vibe.http.internal.http2.hpack : decodeHPACK;

void exampleDecode(IN,OUT)(IN encodedSource, OUT dst) @safe
if(isInputRange!IN && isOutputRange!OUT)

{

const uint size = 4096;
auto table = myCustomAllocator.make!(IndexingTable(size));

decodeHPACK(encodedSource, dst, table,
myCustomAllocator, size);

}

Ranges
D for network protocols

22A Season with D: SAoC Report

Meta-Programming
D for network protocols

HPACK algorithm uses an indexing table (HT), chaining:

● A static, immutable table which is generated at
compile time.

● A dynamic table built around a fixed-length ring buffer.

The indexing table provides an unified address space for
the stored data, represented as an algebraic data type.

23A Season with D: SAoC Report

immutable size_t ST_SIZE = 61;
static immutable H2TableField[ST_SIZE+1] staticTable;

static this() {
staticTable = [// Static table initialization

H2TableField(“hname”,”hvalue”),
…];

}

struct IndexingTable { // Acts as unified interface
private { DynamicTable dTable; } // dTable based on FixedRingBuffer
…

// H2TableSize is a { name: ADT(integers, ubyte, string) }
H2TableField opIndex(const size_t idx) @safe
{

enforceHPACK(idx > 0 && idx < size);

 if (idx < ST_SIZE+1) return staticTable[idx];
 else return dTable[dTable.index - (idx - ST_SIZE) + 1];

}
…

24A Season with D: SAoC Report

Concurrency
D for network protocols

Vibe.d’s concurrency paradigm:

● Uses the asynchronous I/O model, spawning Tasks
(AKA Fibers) using the internal event loop.

● Supports message passing between Tasks.

● Allows for lightweight multiplexing of incoming
requests over HTTP/2 Streams.

HTTP/2 Connection and Request handling
is built around Tasks.

25A Season with D: SAoC Report

Valid
Stream?

Event
loop

HTTP/2
Connection

Handler

HTTP/2 Stream
Multiplexer

HTTP/2
Request Handler

HTTP/2 Response
HEADERS

HTTP/2 Response
DATA (chunk)

Writable
Connection

Readable
Connection

runTask()
Register
Stream

runTask()
Build

response

yield() control
chunk++

write(Headers)

write(Data chunk)

read
(Request)

Data
Available

true false

write(Error: GOAWAY)

read(Frame Header)

26A Season with D: SAoC Report

Experience
Analysis

A participant’s perspective

27A Season with D: SAoC Report

● A great occasion to learn from experienced
programmers and to get to know them

● Lightens the burden of starting as a OSS contributor

● Gain insights about the dynamics of a Open Source
Software community

Why SAoC?

28A Season with D: SAoC Report

● A great occasion to learn from experienced
programmers and to get to know them

● Lightens the burden of starting as a OSS contributor

● Gain insights about the dynamics of a Open Source
Software community

● All of that while being paid

Why SAoC?

29A Season with D: SAoC Report

I want to start contributing to D, but:

1. I can’t decide what to work on.

2. I don’t know who to talk to.

3. I have no experience and I am afraid of not
completing my work.

 How can SAoC/GSoC help me?

Starting as a contributor

30A Season with D: SAoC Report

I can’t decide what to work on.

● The Dlang wiki provides idea pages, where
community members listed possible useful
projects. Mine: GSoC 2018 ideas page.

● Each project has an assigned mentor which
can be contacted in case one wishes to start a
collaboration.

Starting as a contributor

31A Season with D: SAoC Report

I don’t know who to talk to.
● Post on the D forum

● Ask on IRC

● Write a simple proposal and send it by e-mail to the
maintainers of the project of your interest.

Edit: See @wilzbach presentation

Starting as a contributor

32A Season with D: SAoC Report

The first time on a well-established codebase might
signify:

● Not knowing where to start.

● Little understanding of the internal logic of the project.

● Little familiarity with the development process.

● A lot of time to be spent reading.

Tackling a huge project
Issues

33A Season with D: SAoC Report

Never be afraid of reading! My case:

● RFCs which detailed the structure of what I had to
build.

● Code documentation for Phobos, Vibe.d, and particular
projects.

● Similar projects: Webservers which already introduced
support for HTTP/2.

● Hints: Forum posts, IRC discussions.

Tackling a huge project
Useful Resources

34A Season with D: SAoC Report

Mentoring: key to a succesful project kick-off.

What if my mentor cannot help?

● Write as many forum posts as you need

● Discuss the issues on IRC

Let your needs be heard!

Tackling a huge project
Asking for help

35A Season with D: SAoC Report

Notes for
the future

36A Season with D: SAoC Report

● Spreading D usage

● Pushing development of D features

● Fixing bugs thanks to fresh eyes and minds

● Bringing new people inside the community

Benefits of SAoC

37A Season with D: SAoC Report

● Participants might drop early

● Work might require more time than planned

● Newly introduced features might be orphaned
after the experience ends

Risks of SAoC

38A Season with D: SAoC Report

Possible Improvements?

Garfield

39A Season with D: SAoC Report

● Increase communication with the participant
using the community channels.

● Improve means of gathering ideas.

● Determine if project comparison is needed, and
clarify a base for that.

Possible Improvements
Looking forward to future editions

40A Season with D: SAoC Report

Mentors might be busy!

● Causes delays on milestone delivery

● Need for someone to follow participants in need of
help

● Need for participants to properly document their
progress so that others can jump in

Communication

41A Season with D: SAoC Report

Helps quantify the impact of the project

● Encourage periodic reporting of the progress made
to the whole community.

● Encourage forum posts and discussion during the
experience.

Aim: motivate the participants

Communication

42A Season with D: SAoC Report

Fostering Ideas
wiki.dlang.org pages are often left to rot.

43A Season with D: SAoC Report

RIP

● https://wiki.dlang.org/Project_Ideas

● https://wiki.dlang.org/Wish_list

● https://wiki.dlang.org/Language_design_discussions

● Project pages that should be updated or removed, e.g.
https://wiki.dlang.org/Calypso

Fostering Ideas

https://wiki.dlang.org/Language_design_discussions

44A Season with D: SAoC Report

Maintain one reference page

● Periodically refreshed with new / updated ideas

● Periodically cleansed from old projects

● Linked from the dlang.org website directly

● Makes contributors autonomous in finding a project

● Used as reference regarding planned and desired work

Fostering Ideas

45A Season with D: SAoC Report

How to compare work from different participants?

● Projects have different requirements

● Milestone design is left to each participant

● Communication channels are various
(e-mail, forum, IRC, Slack…)

● Development process is not unique for all projects

Project Comparison

46A Season with D: SAoC Report

Objectively judging a project needs some sort of data
quantification.

● LoC written?

● Pull Requests submitted?

● Communication activity?

I’ve gathered some data from Francesco Mecca: SAoC
Participant, Fork-Based GC for DRuntime

Project Comparison

47A Season with D: SAoC Report

● Study of GC implementations, from Sociomantic to
Phobos

● Design of test suites and benchmark suites

● Implementation of fork-based GC against the current
DRuntime (~ 500 LoC)

● Study of the use cases suitable for a fork-based GC

● Multiple rebase cycles against upstream DRuntime

Project Comparison
Fork-based GC

48A Season with D: SAoC Report

Project Comparison
Fork-based GC for DRuntime HTTP/2 in Vibe.d

Pull Requests opened 4 17

 Pull Requests opened,
reviewed and merged 3 16

 Number of e-mails
exchanged with

respective mentors
128 24

 Lines of Code written
and submitted

1111 6563

Lines of Code written,
reviewed and merged 572 4988

49A Season with D: SAoC Report

Project Comparison
Fork-based GC for DRuntime HTTP/2 in Vibe.d

Pull Requests opened 4 17

 Pull Requests opened,
reviewed and merged 3 16

 Number of e-mails
exchanged with

respective mentors
128 24

 Lines of Code written
and submitted

1111 6563

Lines of Code written,
reviewed and merged 572 4988

50A Season with D: SAoC Report

Numerical data is not sufficient.

● Some projects might require more design than actual
keyboard work

● Some might require more benchmarks or testing

● Some might depend on the code submission method

Project Comparison

51A Season with D: SAoC Report

 HTTP/2 in Vibe.d

Project Comparison

Actual implementation Discussion, design, benchmarks...

52A Season with D: SAoC Report

Fork-based GC for DRuntime

Project Comparison

Actual implementation Discussion, design, benchmarks...

53A Season with D: SAoC Report

What’s the point in comparing projects then?

Possible reasons:

● Strengthen competition between participants to
enhance work done

● Award one or more participants as “winner” as an
additional benefit

● ? ← Needs more discussion

Not needed for actual project completion!

Project Comparison

54A Season with D: SAoC Report

How to ensure project completion?

● Careful planning: give all the necessary time for milestones
to be laid down

● Ensure mentors are available and willing

● When selecting participants, consider interest and proposal
over technical preparation and CV

● Require a significant amount of documentation, so that work
doesn’t get lost!

Project Comparison

55A Season with D: SAoC Report

Symmetry Autumn of Code

● Is a great occasion to introduce new people into the D
community

● Can be an alternative and stimulating approach to starting
as a contributor

● Needs more guarantees: use communication, gathering of
idea, project evaluation.

Conclusions

56A Season with D: SAoC Report

Thank you!
Questions?

57A Season with D: SAoC Report

Heartfelt thanks to:

● The D Language Foundation and Symmetry Investments for making SAoC
possible.

● Mike Parker and everyone who worked to organize and manage the
experience.

● Sönke Ludwig, who helped me through the process as my mentor.

● The D community who created invaluable resources through discussion on
the forum, the blog, all the IRC channels… Keep it up!

● Francesco Mecca, who helped me as a participant of SAoC and long-time
fellow developer.

● Andrea, who’s been by my side the whole time.

Acknowledgements

58A Season with D: SAoC Report

● SAoC Project Repository
 vibe-http: https://github.com/vibe-d/vibe-http

 vibe-hpack: https://github.com/gallafrancesco/vibe-hpack (merged in vibe-http)

● [RFC 7540] Hypertext Transfer Protocol Version 2 (HTTP/2)

 https://tools.ietf.org/html/rfc7540

● [RFC 7541] HPACK: Header Compression for HTTP/2

 https://tools.ietf.org/html/rfc7541

● GSoC 2018 Ideas Page

 https://wiki.dlang.org/GSOC_2018_Ideas

● SAoC 2018 Ideas Page

 https://wiki.dlang.org/SAOC_2018_ideas

● DLang's Blog posts about SAoC

 Presentation, https://dlang.org/blog/symmetry-autumn-of-code/

 Updates, https://dlang.org/blog/2018/09/15/symmetry-autumn-of-code-is-underway/

References

59A Season with D: SAoC Report

Appendix: HTTP/2
● Stateful, connection-aware protocol

● Server and client communicate through HTTP
requests embedded in Frames.

● A request / response cycle of Frames is called a
Stream.

● Streams can be multiplexed over the same TCP
connection.

● Exploits Huffman coding to compress Frame headers
through the HPACK algorithm.

60A Season with D: SAoC Report

HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

A stream is a request / response cycle, has finite lifetime and
cannot be reused.

61A Season with D: SAoC Report

HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

GET / HTTP/2 […]

HTTP/2 200 OK […]

[optional] DATA Frames

62A Season with D: SAoC Report

HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

GET / HTTP/2 […]

HTTP/2 200 OK […]

[optional] DATA Frames

main.css

my_cat.png

63A Season with D: SAoC Report

HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

GET / HTTP/2 […]

HTTP/2 200 OK […]

[optional] DATA Frames

main.css

my_cat.png

No ordering forced: Stream responses can interleave!

64A Season with D: SAoC Report

Reasons behind HTTP/2
Well-known FreeBSD developer: "The protocol has [...] layering
violations, inconsistencies, needless complexity, bad compromises” [1]

Is he right? Yes:

● HTTP/2 maintains stateful connections over TCP, which is
already connection-aware.

● Encodes all headers as binary, using more memory and
computing power than HTTP/1.1

● Not intrinsically safer: web browser only implement it over
TLS.

[1] HTTP/2.0 - The IETF is Phoning It In, Poul-Henning Kamp, acmqueue vol. 13 issue 2, 2015

65A Season with D: SAoC Report

Reasons behind HTTP/2
What the hell did you work on then?

HTTP/2 is controversial yet HTTP/1.1 is not built to scale
efficiently when faced with:

● Large requests (high number of header fields): lots of
noise for a simple GET

● Dynamic webpages which require more than one HTTP
request. HTTP/1.1 sends each request on a separate TCP
connection (often destroying TCP flow control mechanism)

HTTP/2 is useful for “heavy” HTTP servers.

66A Season with D: SAoC Report

Reasons behind HTTP/2
A great number of existing web servers support HTTP/2.

● Not all implementations are equal (some details of stream
prioritization and flow control can be different)

● Not all websites need HTTP/2: my blog doesn’t, your
online platformer might.

● Having HTTP/2 in Vibe.d means being able to compete
with existing web servers as a standalone application.
Benefits: increased development surface, larger test base:
solid framework in the long run.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

