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A Season with    

Tales of a Symmetry Autumn of Code participant
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● Promoted by the D Language Foundation and Symmetry 
Investments

● Period of 4 months: September 2018 – January 2019

● One milestone each month

● 3 Participants, each one working on a different project

Objective?

Improving the D Ecosystem

Symmetry Autumn of Code
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About me
● CS student in Italy, 24 years old

● Experienced in C, Python, some Java. Met D while trying to 
expand my experience in programming languages

● Before SAoC: ~1 year of D experiments

● Fond of language theory, concurrent program verification, 
networking protocols

● Looking forward to contribute to an Open Source codebase
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HTTP/2 in Vibe.d
● Work on the experimental vibe-http repository.

● Mentor: Sönke Ludwig

● Project idea found on Dlang’s wiki page for GSoC 
2018.

● HTTP/2 implementation had to be written almost from 
scratch.

HTTP/2? What does that 2 stand for?



5A Season with D: SAoC Report

HTTP/1 vs HTTP/2
Stateless:

One request per TCP 
Connection.

Stateful:
Connection state is mantained 

between requests.

Cleartext protocol:
Headers and data are transmitted 

without further serialization.

Binary Protocol:
Frames are serialized using the 
HPACK algorithm and trasmitted 

as binary. 

Relies on TCP to implement flow 
control at the packet level.

Integrates flow control at the 
Frame level using a connection 

window.

Ordered and blocking. Multiplexed using the concept of 
Streams.



6A Season with D: SAoC Report

Work Plan
HTTP/2 is composed roughly of 3 logic blocks:

● HTTP/1 to HTTP/2 Protocol switching

● The HPACK header compression algorithm

● Asynchronous handling of HTTP/2 Streams

Each block became a milestone in my work plan.
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Milestones
Milestones acted as checkpoints to ensure us 

participants had a plan to follow.

● Planned in advance while proposing an application to 
SAoC, with the help of our respective mentors

● Progress on a milestone was reported month by 
month

● Proposed by applicants, reviewed by organizers and 
mentors
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Working with a mentor
● Discussion topics: bugs found, implementation issues, 

high-level strategy.

● Means of communication: e-mails and GitHub PRs.

● Difficulties: adapting to the mentor’s development 
cycle.

● Benefits: constant communication improved focus and 
commitment towards a complete project realization.  
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Workflow
September – October 2018 

Dedicated to:

● Studying the available resources regarding HTTP/2, 
mainly RFC 7540 and RFC 7541.

● Reading through vibe’s HTTP module to familiarize 
with it.

● Discussing an high-level strategy with my mentor.

Milestone: HTTP/1 to HTTP/2 Protocol Switching
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Workflow
October – November 2018

Dedicated to:

● Implementing the HPACK header compression 
algorithm.

● Digging deep into Phobos modules, especially 
std.range, std.algorithm and std.traits.

● Testing the obtained HPACK implementation.

Milestone: HPACK header compression algorithm
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Workflow
November – December 2018

Dedicated to:

● Devise an efficient strategy for asynchronous 
management of HTTP/2 Streams

● Compare performance and logic of different 
implementations in various languages (C, C++, Go)

● Testing, bug fixing, testing, bug fixing, ...

Milestone: HTTP/2 Streams and Multiplexing
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Workflow
December 2018 - Ongoing

Work that is still being pursued:

● Complete the review of HTTP/2 Streams and 
Multiplexing so that it can be merged in vibe-http 

● Profile web server performance and memory usage, 
trying to minimize dynamic allocations and remove as 
much GC-dependent code as possible.

● Testing, bug fixing, testing, bug fixing, ...
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A Season with D: SAoC Report

Accomplishments
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Accomplishments
The introduction of HTTP/2 in vibe-http is geared towards 
building a new HTTP module to be merged in Vibe.d.

Modifying the existing codebase is still going to be a long 
process and has to be carried out with patience and care.

Yet, the new HTTP server lives, and talks with HTTP/1 
and HTTP/2 clients succesfully...

...in an experimental way.
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Accomplishments
Protocol Switching: HTTP/2 is enabled transparently for cleartext HTTP 
connections and requires minimal changes for HTTPS ones.    

void main() {           /** Example of HTTP/2 webserver initialization using TLS **/

HTTPServerSettings settings;                                                                                    
settings.port = 8000;                                                                                        
settings.bindAddresses = ["127.0.0.1"];

/** TLS Context initialization **/                                                                                            
        settings.tlsContext = createTLSContext(TLSContextKind.server);           

settings.tlsContext.useCertificateChainFile("server.crt");     
settings.tlsContext.usePrivateKeyFile("server.key"); 

settings.tlsContext.alpnCallback(http2Callback);    /** Setup ALPN to accept HTTP/2 **/

listenHTTP!requestHandler(settings);                     /** start the event loop **/                     
        runApplication(); 
}
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Accomplishments
HPACK module: a simple interface based on std.range which 
can encode and decode arbitrarily long chunks of headers.

● Can be used as standalone library (outside vibe-http) 

● The interface is @safe and almost @nogc, if it wasn’t for 
those exceptions…

● Lightweight on CPU and memory resources, protecting 
from possible DoS attacks which exploit the heavy 
computational cost of the encoding algorithm.
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Accomplishments
HTTP/2 message exchanges:

● Handling multiple HTTP requests over the same connection 
by using asynchronous handlers based on Vibe.d’s fibers. 

● Complying with flow control restrictions and manage data 
dispatch while responding to other requests, by performing 
each dispatch on a separate task.

● Enforcing protocol correctness by mantaining a connection 
state, enforcing compliance with protocol rules defined in 
RFC 7540.
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Missing Bricks
● Review of the PR regarding stream multiplexing and 

flow control logic has yet to be completed, and will 
probably undergo some changes.

● Server Push, an additional feature of HTTP/2 which 
allows a server to send data without a previous 
request. Not a requirement for HTTP/2 functionality: 
postponed.

● Testing, bug fixing, testing, bug fixing, …
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Lessons Learned
D for network protocols

Implementing HTTP/2 required application of some of the 
language features:

● Ranges as a serialization interface.

● Meta-Programming through mixins, CTFE and ADTs.

● Abstract concurrency paradigm based on Tasks.
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Ranges
D for network protocols

Ranges proved to be a powerful abstraction to handle data 
serialization.

● HPACK interface: based on std.range and std.algorithm.

● Methods templatized on InputRange and OutputRange, 
usable outside of the HTTP/2 module.

● Support custom allocators by using stdx.allocator.

● Could be @nogc...
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import vibe.http.internal.http2.hpack : decodeHPACK;

void exampleDecode(IN,OUT)(IN encodedSource, OUT dst) @safe
if(isInputRange!IN && isOutputRange!OUT)

{

const uint size = 4096;
auto table = myCustomAllocator.make!(IndexingTable(size));

decodeHPACK(encodedSource, dst, table,
myCustomAllocator, size);

}

Ranges
D for network protocols



22A Season with D: SAoC Report

Meta-Programming
D for network protocols

HPACK algorithm uses an indexing table (HT), chaining:

● A static, immutable table which is generated at 
compile time.

● A dynamic table built around a fixed-length ring buffer.

The indexing table provides an unified address space for 
the stored data, represented as an algebraic data type.
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immutable size_t ST_SIZE = 61;
static immutable H2TableField[ST_SIZE+1] staticTable; 

static this() {                                           
staticTable = [ // Static table initialization

H2TableField(“hname”,”hvalue”),
… ];

}

struct IndexingTable { // Acts as unified interface
private {  DynamicTable dTable; } // dTable based on FixedRingBuffer
…

// H2TableSize is a { name: ADT(integers, ubyte, string) }
H2TableField opIndex(const size_t idx) @safe
{

enforceHPACK(idx > 0 && idx < size);

        if (idx < ST_SIZE+1) return staticTable[idx];
        else return dTable[ dTable.index - (idx - ST_SIZE) + 1 ];

}
…
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Concurrency
D for network protocols

Vibe.d’s concurrency paradigm:

● Uses the asynchronous I/O model, spawning Tasks 
(AKA Fibers) using the internal event loop.

● Supports message passing between Tasks.

● Allows for lightweight multiplexing of incoming 
requests over HTTP/2 Streams.

HTTP/2 Connection and Request handling
is built around Tasks.



25A Season with D: SAoC Report

Valid
Stream?

Event
loop

HTTP/2
Connection 

Handler

HTTP/2 Stream
Multiplexer 

HTTP/2
Request Handler 

HTTP/2 Response
HEADERS

HTTP/2 Response
DATA (chunk)

Writable
Connection 

Readable
Connection

runTask()
Register
Stream

runTask()
Build

response

yield() control
chunk++

write(Headers)

write(Data chunk)

read
(Request)

Data 
Available

true false

write(Error: GOAWAY)

read(Frame Header)
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Experience 
Analysis

A participant’s perspective
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● A great occasion to learn from experienced 
programmers and to get to know them

● Lightens the burden of starting as a OSS contributor

● Gain insights about the dynamics of a Open Source 
Software community

Why SAoC?
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● A great occasion to learn from experienced 
programmers and to get to know them

● Lightens the burden of starting as a OSS contributor

● Gain insights about the dynamics of a Open Source 
Software community

● All of that while being paid

Why SAoC?
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I want to start contributing to D, but:

1. I can’t decide what to work on.

2. I don’t know who to talk to.

3. I have no experience and I am afraid of not 
completing my work.

 How can SAoC/GSoC help me?

Starting as a contributor
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I can’t decide what to work on.

● The Dlang wiki provides idea pages, where 
community members listed possible useful 
projects. Mine: GSoC 2018 ideas page.

● Each project has an assigned mentor which 
can be contacted in case one wishes to start a 
collaboration.

Starting as a contributor
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I don’t know who to talk to.
● Post on the D forum

● Ask on IRC

● Write a simple proposal and send it by e-mail to the 
maintainers of the project of your interest.

Edit: See @wilzbach presentation

Starting as a contributor



32A Season with D: SAoC Report

The first time on a well-established codebase might 
signify:

● Not knowing where to start.

● Little understanding of the internal logic of the project.

● Little familiarity with the development process.

● A lot of time to be spent reading.

Tackling a huge project
Issues
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Never be afraid of reading! My case:

● RFCs which detailed the structure of what I had to 
build.

● Code documentation for Phobos, Vibe.d, and particular 
projects.

● Similar projects: Webservers which already introduced 
support for HTTP/2.

● Hints: Forum posts, IRC discussions.

Tackling a huge project
Useful Resources
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Mentoring: key to a succesful project kick-off. 

What if my mentor cannot help?

● Write as many forum posts as you need

● Discuss the issues on IRC

Let your needs be heard!  

Tackling a huge project
Asking for help
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Notes for 
the future
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● Spreading D usage

● Pushing development of D features

● Fixing bugs thanks to fresh eyes and minds

● Bringing new people inside the community

Benefits of SAoC
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● Participants might drop early

● Work might require more time than planned

● Newly introduced features might be orphaned 
after the experience ends

Risks of SAoC
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Possible Improvements?

Garfield



39A Season with D: SAoC Report

● Increase communication with the participant 
using the community channels.

● Improve means of gathering ideas.

● Determine if project comparison is needed, and 
clarify a base for that.

Possible Improvements
Looking forward to future editions
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Mentors might be busy!

● Causes delays on milestone delivery

● Need for someone to follow participants in need of 
help

● Need for participants to properly document their 
progress so that others can jump in

Communication
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Helps quantify the impact of the project

● Encourage periodic reporting of the progress made 
to the whole community.

● Encourage forum posts and discussion during the 
experience.

Aim: motivate the participants

Communication
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Fostering Ideas
wiki.dlang.org pages are often left to rot.
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RIP

● https://wiki.dlang.org/Project_Ideas

● https://wiki.dlang.org/Wish_list

● https://wiki.dlang.org/Language_design_discussions

● Project pages that should be updated or removed, e.g. 
https://wiki.dlang.org/Calypso

Fostering Ideas

https://wiki.dlang.org/Language_design_discussions
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Maintain one reference page

● Periodically refreshed with new / updated ideas

● Periodically cleansed from old projects

● Linked from the dlang.org website directly

● Makes contributors autonomous in finding a project

● Used as reference regarding planned and desired work

Fostering Ideas
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How to compare work from different participants?

● Projects have different requirements

● Milestone design is left to each participant

● Communication channels are various 
(e-mail, forum, IRC, Slack…)

● Development process is not unique for all projects

Project Comparison
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Objectively judging a project needs some sort of data 
quantification.

● LoC written?

● Pull Requests submitted?

● Communication activity?

I’ve gathered some data from Francesco Mecca: SAoC 
Participant, Fork-Based GC for DRuntime

Project Comparison
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● Study of GC implementations, from Sociomantic to 
Phobos

● Design of test suites and benchmark suites

● Implementation of fork-based GC against the current 
DRuntime (~ 500 LoC)

● Study of the use cases suitable for a fork-based GC

● Multiple rebase cycles against upstream DRuntime

Project Comparison
Fork-based GC
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Project Comparison
Fork-based GC for DRuntime HTTP/2 in Vibe.d

Pull Requests opened 4 17

 Pull Requests opened,
reviewed and merged 3 16

 Number of e-mails 
exchanged with 

respective mentors
128 24

 Lines of Code written
and submitted

1111 6563

Lines of Code written,
reviewed and merged 572 4988
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Project Comparison
Fork-based GC for DRuntime HTTP/2 in Vibe.d

Pull Requests opened 4 17

 Pull Requests opened,
reviewed and merged 3 16

 Number of e-mails 
exchanged with 

respective mentors
128 24

 Lines of Code written
and submitted

1111 6563

Lines of Code written,
reviewed and merged 572 4988
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Numerical data is not sufficient.

● Some projects might require more design than actual 
keyboard work

● Some might require more benchmarks or testing

● Some might depend on the code submission method

Project Comparison
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 HTTP/2 in Vibe.d

Project Comparison

Actual implementation        Discussion, design, benchmarks...
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Fork-based GC for DRuntime

Project Comparison

Actual implementation        Discussion, design, benchmarks...
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What’s the point in comparing projects then?

Possible reasons:

● Strengthen competition between participants to 
enhance work done

● Award one or more participants as “winner” as an 
additional benefit

● ? ← Needs more discussion

Not needed for actual project completion!

Project Comparison
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How to ensure project completion?

● Careful planning: give all the necessary time for milestones 
to be laid down

● Ensure mentors are available and willing

● When selecting participants, consider interest and proposal 
over technical preparation and CV

● Require a significant amount of documentation, so that work 
doesn’t get lost!

Project Comparison
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Symmetry Autumn of Code

● Is a great occasion to introduce new people into the D 
community

● Can be an alternative and stimulating approach to starting 
as a contributor

● Needs more guarantees: use communication, gathering of 
idea, project evaluation.

Conclusions
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Thank you!
Questions?

 



57A Season with D: SAoC Report

Heartfelt thanks to:

● The D Language Foundation and Symmetry Investments for making SAoC 
possible.

● Mike Parker and everyone who worked to organize and manage the 
experience.

● Sönke Ludwig, who helped me through the process as my mentor.

● The D community who created invaluable resources through discussion on 
the forum, the blog, all the IRC channels… Keep it up!
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●     SAoC Project Repository
        vibe-http: https://github.com/vibe-d/vibe-http

        vibe-hpack: https://github.com/gallafrancesco/vibe-hpack (merged in vibe-http)

●     [RFC 7540] Hypertext Transfer Protocol Version 2 (HTTP/2)

        https://tools.ietf.org/html/rfc7540

●     [RFC 7541] HPACK: Header Compression for HTTP/2

        https://tools.ietf.org/html/rfc7541

●     GSoC 2018 Ideas Page

        https://wiki.dlang.org/GSOC_2018_Ideas

●     SAoC 2018 Ideas Page

        https://wiki.dlang.org/SAOC_2018_ideas

●     DLang's Blog posts about SAoC

        Presentation, https://dlang.org/blog/symmetry-autumn-of-code/

        Updates, https://dlang.org/blog/2018/09/15/symmetry-autumn-of-code-is-underway/
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Appendix: HTTP/2
● Stateful, connection-aware protocol

● Server and client communicate through HTTP 
requests embedded in Frames.

● A request / response cycle of Frames is called a 
Stream.

● Streams can be multiplexed over the same TCP 
connection.

● Exploits Huffman coding to compress Frame headers 
through the HPACK algorithm.



60A Season with D: SAoC Report

HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

A stream is a request / response cycle, has finite lifetime and 
cannot be reused.
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HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

GET / HTTP/2 […]

HTTP/2 200 OK […]

[optional] DATA Frames
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HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

GET / HTTP/2 […]

HTTP/2 200 OK […]

[optional] DATA Frames

main.css

my_cat.png
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HTTP/2

Stream #2

Stream #3

Stream #1

Client Webpage

HTTP/2 Server

TCP Connection

GET / HTTP/2 […]

HTTP/2 200 OK […]

[optional] DATA Frames

main.css

my_cat.png

No ordering forced: Stream responses can interleave!
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Reasons behind HTTP/2
Well-known FreeBSD developer: "The protocol has [...] layering 
violations, inconsistencies, needless complexity, bad compromises” [1]

Is he right? Yes:

● HTTP/2 maintains stateful connections over TCP, which is 
already connection-aware.

● Encodes all headers as binary, using more memory and 
computing power than HTTP/1.1

● Not intrinsically safer: web browser only implement it over 
TLS.

[1] HTTP/2.0 - The IETF is Phoning It In, Poul-Henning Kamp, acmqueue vol. 13 issue 2, 2015
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Reasons behind HTTP/2
What the hell did you work on then?

HTTP/2 is controversial yet HTTP/1.1 is not built to scale 
efficiently when faced with:

● Large requests (high number of header fields): lots of 
noise for a simple GET

● Dynamic webpages which require more than one HTTP 
request. HTTP/1.1 sends each request on a separate TCP 
connection (often destroying TCP flow control mechanism)

HTTP/2 is useful for “heavy” HTTP servers.
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Reasons behind HTTP/2
A great number of existing web servers support HTTP/2.

● Not all implementations are equal (some details of stream 
prioritization and flow control can be different)

● Not all websites need HTTP/2: my blog doesn’t, your 
online platformer might.

● Having HTTP/2 in Vibe.d means being able to compete 
with existing web servers as a standalone application.
Benefits: increased development surface, larger test base: 
solid framework in the long run.
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