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Caveat Emptor

● This is a talk about “compile-time”
● I’m prototyping some of these ideas
● At the moment this is very speculative
● Maybe too early to present but… “present 

early, present often”
● Heavy skepticism is a healthy reaction
● Feedback still welcome



  

Peter Principle & D

● Peter principle

– You are promoted until you reach your 
level of incompetence

● Management concept
● Applies to other things… like D



  

Peter Principle & D

● D as an alternative to C

– Picture a typical C codebase
– Some parts of C are pretty reasonable. 

Functions, structs, etc.
● Some improvements here and there



  

Peter Principle & D

● D as an alternative to C

– Other parts are a trainwreck
– Just focusing on the preprocessor...

● #include headers
● #define CONSTANTs, MACROs
● #if, #ifdef



  

Peter Principle & D

● D as an alternative to C

– D is created as an improved C
– #define CONSTANTs become enum consts
– #define MACROs become functions 

(inlined, templated, etc.)
– Sane modules
– Replaced two separate languages 

(preprocessor, C) with a single one
● Safer, more readable, integrated



  

Peter Principle & D

● D as an alternative to C

– Things compile super fast
– The code is simple and readable
– It mostly uses simple concepts

● Simple to get started with
● A few advanced features here

and there solve the
tougher issues



  

Peter Principle & D

● D > C

– Life is good, so why rock the boat?
– You feel the aluring power of D
– You no longer want C-style programming
– You want ranges; generic algorithms; 

design by instrospection; const and 
immutable; __traits, mixins, pure, @nogc, 
@safe…



  

Peter Principle & D

● Modern D

– Lots of cool stuff. But sometimes...
– Slow compilation
– Inscrutable error messages
– Compile-time code is inconvenient to 

debug
– Features that don’t interact well with each 

other
– You often need experts, ugly hacks, etc.



  

Peter Principle & D

● Modern D

– D has been promoted to its level of 
incompetence

– Why does this happen?



  

Peter Principle & D

● Modern D

– D has amassed a lot of features
– Many of them lack a unifying structure

● Even if they deal with the same 
fundamental concepts

● They clash with each other



  

Peter Principle & D

● Modern D

– The programming model is not the most 
appropriate for modern D style code



  

The Core of D

● Stroustrup:

– “Inside C++ is a small elegant language 
struggling to get out”

● Luís:

– Is there a smaller, more elegant language 
struggling to get out of D?

– What is that core?
● I will focus on compile-time

– How do we get there?



  

D Improvement Process

● Two ways of improving D
● Small, localized problems solved with small, 

localized fixes

– The iterative model
– Provide a compatibility path
– Examples: ProtoObject, constructors, ...



  

D Improvement Process

● How do we solve big, fundamental issues?

– D is large. Lots of moving parts.
– Keeping up with all the problems that pop 

up is a losing battle
– Simplify!
– Find a few primitives that you can build 

upon
– Research project



  

Compile-Time Model

● What should the core D features be? 
● Modern D revolves around compile-time

– Instrospection
– Code generation

● You code to an ecosystem of other code
● These should be as natural as regular code



  

Compile-Time Model

Compile-time is not a single thing

– Different uses
● Compile-time computation
● Conditional compilation
● Metaprogramming

– Disparate implementations
● Leads to accidental complexity



  

Compile-Time Model

● “Compile-time vs. compile-time” article

– https://wiki.dlang.org/User:Quickfur/
Compile-time_vs._compile-time

– Two types of compile-time
● AST stuff (templates, static if, …)
● CTFE

– AST manipulation no access to semantics
– CTFE has no access to AST manipulation



  

Compile-Time Model

● “Compile-time vs. compile-time” article

– “Why can't the compiler read this value at 
compile-time, since it's clearly known at 
compile-time?!”

int ctfeFunc(bool b)
{
    static if (b) // <--- compile error
        return 1;
    else
        return 0;
}

enum myInt = ctfeFunc(true);



  

Compile-Time Model

● “Compile-time vs. compile-time” article

– “what does it print?”

void func(Args...)(Args args) {
    foreach (a; args) {
        static if (is(typeof(a) == int)) {
            pragma(msg, "is an int");
            continue;
        }
        pragma(msg, "not an int");
    }
}
void main() {
    func(1);
}



  

Compile-Time Model

● What does this print?

int(int x)

int foo(int x) {
    return x*2;
}

void main() {
    writeln(typeof(foo).stringof);
}



  

Compile-Time Model

● What about now?

int foo()(int x) {
    return x*2;
}

void main() {
    writeln(typeof(foo).stringof);
}

void



  

Template Types

● The type system doesn’t know anything 
about templates

● Totally reasonable when you think about what 
a template currently is

● There’s nothing fundamental about this 
design

● Is it the design that we actually want?



  

Template Types

● What’s a type?
● A type says:

– What something represents
– What its possible states are
– What operations you can perform with it

● Is this something reasonable to know about a 
template?



  

Template Types

● The type of a template:

– Something you can “instantiate”
– What you need to instantiate it
– What you get back

● What should its type be, then?
● What should the exact semantics be?



  

Template Types

● Semantics of instantiation

– When? (ordering)
● How it interacts with declarative 

features
● If there are side-effects then ordering 

matters
● Yes, there will be side-effects!



  

Template Types

struct Typedef(T, T init = T.init, string cookie = null);

● Semantics of instantiation

– How many times? (memoization)
● Holdover from the cookie cutter model
● Not always appropriate

– Repeated side-effects
– Typedef cookie



  

Template Types

● Semantics of “what you get back”

– You generate something that has a value

– We often just want the value
● Function-like call and return

template Foo() {
    enum value = true;
}

bar(Foo!().value);



  

Template Types

● Semantics of “what you get back”

– Eponymous trick

– Reminds me of another language…
– What about the other fields?

template Foo() {
    enum Foo = true;
}

bar(Foo!());



  

Template Types

● Syntax of instantiation

● Accidental complexity: !() required

int baz() { return 42; }

template Foo() {
    enum Foo = true;
}

bar(Foo!());
bar(baz);



  

Compile-Time Computation

● CTFE

– What does it mean?



  

Compile-Time Computation

● CTFE

– What does it mean?
– Conceptual simplicity

● Just call it compile-time execution
– What should be CTFEable?

● Is there a simple rule for that?



  

Compile-Time Integration

● Arbitrary differences tend to compound

– Example: UFCS
● return algorithm3(

algorithm2(algorithm1(data)))

● return data
.algorithm1
.algorithm2
.algorithm3;



  

Compile-Time Integration

● Arbitrary differences tend to compound

– Example: UFCS @ CT
– https://atilaoncode.blog/2018/12/11/what-

d-got-wrong/

alias memberNames = AliasSeq!(__traits(allMembers, T));
alias Member(string name) = 

Alias!(__traits(getMember, T, name));
alias members = staticMap!(Member, memberNames);
alias memberFunctions = Filter!(isSomeFunction, members);



  

Compile-Time Integration

● Arbitrary differences tend to compound

– Example: UFCS @ CT
– https://atilaoncode.blog/2018/12/11/what-

d-got-wrong/

alias memberFunctions = __traits(allMembers, T)
    .staticMap!Member
    .Filter!(isSomeFunction);

alias memberFunctions = __traits(allMembers, T)
    .staticMap!(name => Alias!(__traits(getMember, T, name)))
    .Filter!isSomeFunction



  

Compile-Time Integration

● Arbitrary differences tend to compound

– Example: function arguments
● foo(&bar)
● foo!bar

– Interacts with @property-like behavior, etc.



  

Compile-Time is Intrusive

● One of the strengths of D is its plasticity

● No need to change all the callers

struct Foo {
    int x;
}

F f;
foo(f.x)

struct Foo {
    int _x;
    int x() { return _x*2; }
}

F f;
foo(f.x)



  

Compile-Time is Intrusive

● One of the strengths of D is its plasticity

● The caller sites must be changed to forward 
compile-timeness

– Well, duh?

int x = 7;
int y = 42;
foo(x, y);

int x = 7;
enum y = 42;
foo!(y)(x);



  

Compile-Time is Intrusive

● GCC > D

int bar(int x) {
    if (__builtin_constant_p(x) && x < 50)
        return -1;
    return x*2;
}

int foo(int x) {
    return bar(x);
}

int main() { return foo(42); }



  

Compile-Time is Intrusive

● What’s the point?

#define write_csr(reg, val) ({ \
  if (__builtin_constant_p(val) && (unsigned long)(val) < 32) \
    asm volatile ("csrw " #reg ", %0" :: "i"(val)); \
  else \
    asm volatile ("csrw " #reg ", %0" :: "r"(val)); })

void foo() {
write_csr(SOME_CSR, 7);

}



  

Compile-Time is Intrusive

● What’s the point?

string myFormat(string fmt, int value);

auto f1(string fmt, int x) {
    return myFormat(fmt, x);
}

auto f2(int x) {
    return myFormat(“x = %d”, x);
}

auto f3(int x)() {
    return myFormat(“x = %d”, x);
} 



  

Compile-Time is Intrusive

● What’s the point?

– writefln!fmt(args) is now supported
– We have to change all the call sites
– How do you take advantage of this 

overload in generic code?
– Still doesn’t take advantage of compile-

time knowledge of args



  

Compile-Time is Intrusive

● What’s the point?

– The writefln example is the best case 
scenario

● If you take advantage of compile-time 
knowledge you get a bonus

● Otherwise, things still work
– Changes that start requiring an argument 

to be compile-time are even worse



  

Experimental Approach

● Solution 0: this is not a problem. That’s just 
how the language works.

● Solution 1: go over all of the features and try 
to make them consistent with each other

– Pros: if you can make it work, the users will 
be none the wiser

– Cons: lots of work; I bet it will still leak
● Solution 2:

– Share common infrastructure



  

Experimental Approach

● What’s the type of this?

const x = 42;

● What’s the DMD output for this?

const x = 42;
x = 7;

– Error: cannot modify const expression x



  

Experimental Approach

● What’s the type of this?

enum x = 42;

● What’s the DMD output for this?

enum x = 42;
x = 7;

– Error: cannot modify constant x
Error: cannot modify const expression x



  

Experimental Approach

● We are missing important information in the 
type of x
– Constness
– Compile-timeness

● How do we add the latter?



  

Experimental Approach

● How do we declare a compile-time int?

– We need a “compile-time” type qualifier
– Let’s go over the options:

● compile_time int x = 42;
● comptime int x = 42;
● #int x = 42;



  

Experimental Approach

● How do we declare an enum int?

– #const x = 42;
– #immutable x = 42;



  

Experimental Approach

● We can have a module-level mutable #int x
– We just broke the AST/CTFE dichotomy
– Example:

#string[] namesOfStuffUsed;

void foo(#ref f) {
namesOfStuffUsed ~= f.fullyQualifiedName;
...

}



  

Experimental Approach

● Compile-time statements
– Prefixed with # to enforce compile-time 

execution
● Example: #if(cond)

– Unprefixed based on the type of cond?
● No need to rely on the optimizer

● What about the scopes introduced by {} ?



  

Experimental Approach

● What about the scopes introduced by {} ?
– Several possible approaches
– Prototyping to see how each feels
– Examples:

● Contextual (is it a #statement?, etc.)
● Special braces (#{}, etc.)



  

Experimental Approach

● How do we declare function templates?

– Old:
● foo(int x)(int y);

– New:
● foo(#int x, int y);

● Gives a new meaning to UFCS

● No need to reorder: foo(A a, B b, C c)



  

Experimental Approach

● How do we declare function templates?

– Old:
● foo(int x)(int y);

– New:
● foo(#int x, int y);

● Gives a new meaning to UFCS

● No need to reorder: foo(A a, #B b, C c)



  

Experimental Approach

● Again, what’s the type of a template?

– It’s not “template”, void, etc.

– It’s a #function
– Exact type depends on the type of the 

parameters and return value
● #int #function(#int)



  

Experimental Approach

● How do we declare struct templates?

– Old and new (the hard way)

– Requires first class types
– Annoyingly verbose and opaque. Shorter 

form desirable

template S(int n) {
struct S {

int[n] buffer;
}

}

auto S(#int n) {
struct S {

int[n] buffer;
}
return S;

}



  

Experimental Approach

● How do we declare struct templates?

– Old and new (the hard easy way)

S!3 becomes S(3)
● Like Peano arithmetic
● Still a #function
● Non-pure #fun impacts type equality

struct S(int) {
int[n] buffer;

}

struct S(#int n) {
int[n] buffer;

}



  

Experimental Approach

● What about other #types?

– First class types have types themselves
– Old: void foo(T)();
– New: void foo(#Type T);

● Possibility to integrate typeof & RTTI?
– #Type vs Type



  

Experimental Approach

● What about #type deduction?

– Old: void foo(T)(T x);
– Several possibilities:

● Wildcards
– Sparrow: @AnyType
– Jai: (a: $T, b: T)

● Optional / implicit arguments
– Might require relaxing optional arg rules



  

Experimental Approach

● What about #too #many #pounds?
– Putting # everywhere gets old fast
– Lower #functions

● void #foo(int x) { if(x) ….. }
● void #foo(#int x) { #if(x) ….. }

– Helps answer what’s CTFEable
● Make it #fun, lower and do type checking

– Use #rtFun() to force compile-time execution



  

Experimental Approach

● Semantics of a mixed template/CTFE model

● Like the struct long/short form equivalence

● Implicitly returns a runtime foo function that 
implicitly gets called with y

void foo(#int x, int y)
{
    #if(ctFun(x))
        rtFun(y);
}



  

Experimental Approach

● Lots of features could be subsumed by 
#functions
– pragma(msg, str) => #writeln(str)
– import(“filename”) => #read
– __traits => compile-time API
– Overuse of string mixins

● mixin(parentName ~ “.” ~ 
memberName);

● getMember(parent, memberName);



  

Prior Art

● I’m not aware of any language that explores 
quite this region of the design space

– Sparrow
● First order types, natural CTFE, etc.
● Doesn’t address AST/CTFE mismatch

– Zig
● Has the comptime syntax
● comptime is not a type qualifier

– Jai
● #run, $matching, etc.



  

Conclusion

● Very speculative approach at this moment
● Just a starting point
● I’m playing around with these ideas
● Lots of hard decisions to make
● Feedback is welcome
● Thank you!
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