
Handmade or tool-built?
On the evolution of a parser generator written in D

Kai Nacke

May 10 @ DConf 2019

kai.nacke @ { gmail.com, redstar.de }

Motivation

May 10, 2019 Handmade or tool-built? | Kai Nacke 2

Writing a parser by hand is easy …

… and boring !

Why not use a tool?

My goals for a parser generator

My tool should

• generate a parser body from a grammar description in EBNF

• allow the grammar to be augmented with code

• provide some error correction feature

• work standalone and should be CTFE-enabled

My tool should not

• generate a lexer

• have big runtime dependencies

May 10, 2019 Handmade or tool-built? | Kai Nacke 3

Runtime architecture

• The lexer is a range (InputRange / ForwardRange)

• The (optional) preprocessor filters the range

• The parser does syntax analyzing on the range

• Only part of parser is generated

May 10, 2019 Handmade or tool-built? | Kai Nacke 4

Parser Preprocessor Lexer Content
<<uses>> <<uses>>

Interface to parser

• The generated code requires the following functions / properties

• Interface is still under development!

May 10, 2019 Handmade or tool-built? | Kai Nacke 5

Token tok;

alias TokenKind = typeof(Token.kind);

void advance() { }

bool expect(TokenKind kind) { }

bool consume(TokenKind kind) { }

• TokenKind must be an
enumeration

• Member names are
derived from token
names

Tools for parser generation

In the C/C++ world

• yacc and bison

• ANTLR

• Coco/R

• … and many more!

In the D world

• PEG

• ANTLR

• and now: LLtool

May 10, 2019 Handmade or tool-built? | Kai Nacke 6

• PEG and ANTLR are excellent tools
• PEG has a different approach to parsing
• ANTLR comes with a huge runtime library

https://github.com/redstar/LLtool

Example: simple expressions

May 10, 2019 Handmade or tool-built? | Kai Nacke 7

%token number
%start Expr
%%
Expr
 = Term (("+" | "-") Term)*
 .

Term
 = Factor (("*" | "/") Factor)*
 .

Factor
 = number
 | "(" Expr ")"
 .

Internal data structure

• Grammar is stored as graph

• Graph elements are of type
Node

• Graph can be visualized with dot
(specify –d on command line)

May 10, 2019 Handmade or tool-built? | Kai Nacke 8

Internal data structure - attributes

May 10, 2019 Handmade or tool-built? | Kai Nacke 9

Node
NodeType type;
Cardinality card;
string name;
bool derivesEpsilon;
bool isProductive;
bool isReachable;
TerminalSet firstSet;
TerminalSet followSet;
…

next: Pointer to next node
in sequence

back: Pointer to parent node
Only used if last node in
sequence

inner: Pointer to
content of sequence/
alternative/group

link: Arbitrary list
e.g. list of nonterminal
occurrences

Myth #1: generated parsers are slow

From Oberon-2 grammar

Generated D code

May 10, 2019 Handmade or tool-built? | Kai Nacke 10

Statement = ...
 | "IF" Expr "THEN" StatementSeq
 "END"
 | ...
 .

else if (tok.kind == TokenKind.KW_IF) {
 advance();
 parseExpr();
 consume(TokenKind.KW_THEN);
 parseStatementSeq();
 consume(TokenKind.KW_END);
}

The generated code reflects the grammar. No performance penalty added.

Myth #2: Generators are not flexible enough

From the LLtool grammar: The generated D code:

May 10, 2019 Handmade or tool-built? | Kai Nacke 11

rule
 = (. Node node; .)
 nonterminal<node>
 "="
 rhs<node.link>
 (. node.link.back = node; .)
 "."
 .

void parseRule() {
 Node node;
 parseNonterminal(node);
 consume(TokenKind.Equal);
 parseRhs(node.link);
 node.link.back = node;
 consume(TokenKind.Period);
}

• Add (. code .) in any places
• Pass < parameters > as needed

Myth #3: Bad error messages

• A hand-generated error message from the Oberon-2 lexer:

• Error message based on parser-provided information:

• Can we do better? A human can spot that () is missing…

May 10, 2019 Handmade or tool-built? | Kai Nacke 12

 v := 1A;
 ^^
Error: 22,13: Found hex constant without trailing H

 PROCEDURE (l : List) Get* : Integer;
 ^
Error: 25,31: Expected ; but found :

LL what?

• Recursive descent parsers belong to the LL(1) class

• This acronym means:

• L – the input is read from left to right

• L – the leftmost nonterminal is expanded first

• 1 – one token look-ahead is used

• For most programming languages there is no LL(1) grammar

May 10, 2019 Handmade or tool-built? | Kai Nacke 13

What are LL(1) conflicts?

• The parser uses the current state (= program counter) and the next
token to decide about next move

• A conflict occurs if there is more than one possibility for next move

• Example from Oberon-2 grammar:

May 10, 2019 Handmade or tool-built? | Kai Nacke 14

DeclSeq
 = … ProcDecl ";" | ForwardDecl ";" … .

ProcDecl
 = "PROCEDURE" (Receiver)? IdentDef … .

ForwardDecl
 = "PROCEDURE" "^" (Receiver)? IdentDef … .

 State: in DeclSeq
Next token: “PROCEDURE”

Call ProcDecl or
ForwardDecl?

More LL(1) conflicts

• Left recursion also creates LL(1) conflicts

• Defines a list of statements, separated by ;

• Can you spot the problem?

May 10, 2019 Handmade or tool-built? | Kai Nacke 15

StatementList = StatementList Statement | .
Statement = … ";" .

void parseStatementList() {
 if (tok.kind.among(/* List of tokens */)) {
 parseStatementList();
 parseStatement();
 }
 /* … */
}

LL(1) conflict resolution: Grammar rewriting

• Rewrite grammar
E.g. rewrite the statement list

as

• In some cases result can be difficult to understand

May 10, 2019 Handmade or tool-built? | Kai Nacke 16

StatementList = StatementList Statement | .
Statement = … ";" .

StatementList = (Statement)* .

LL(1) conflict resolution: Adding resolvers

• Add custom code to guide decision at runtime

• Syntax is %if (. bool expression .)

• Only allowed where LL(1) conflict occurs

• Can use additional information; e.g.

uses a symbol table lookup in the D function:

May 10, 2019 Handmade or tool-built? | Kai Nacke 17

Qualident = (%if (. isModule() .) ident ".“)? ident.

bool isModule() {
 return tok.val in modules;
}

Handling of grammar variants

• Language families often have a lot of syntax in common
• C and C++

• PIM4 and ISO version of Modula-2

• It is desirable to build one parser for one language family

• Is this possible with a parser generator?

May 10, 2019 Handmade or tool-built? | Kai Nacke 18

Grammar variants: the token trick

• A lot of rules is triggered by special keywords
• E.g. class is a keyword in C++ but not in C

• Use the following approach
• The lexer recognizes only identifiers

• The preprocessor maps keyword identifiers to keyword tokens, based on
language family

• The parser does not see keyword token and does not handle this case

May 10, 2019 Handmade or tool-built? | Kai Nacke 19

Grammar variants: the variant selector

• The token trick does not always help
• E.g. there is no special keyword

• I am working on a special feature: the variant selector

• Idea: mark variant specific element

• Requires bool property generic in the parser

May 10, 2019 Handmade or tool-built? | Kai Nacke 20

DefinitionModule = ("GENERIC“)?!generic "DEFINTIION" "MODULE" identifier ";" .

The variant selector looks cool, but …

• It makes elements “invisible”
• Can introduce non-reachable rules – an error today

• Can unintentionally make elements optional

• Requires more thought!

 May 10, 2019 Handmade or tool-built? | Kai Nacke 21

DefinitionModule
 = "DEFINTIION" "MODULE" identifier ";“
 | ("GENERIC" "DEFINTIION" "MODULE" identifier ";“)!generic
 .

More ideas

• Add a look-ahead heuristic for resolvers

• From Oberon-2 grammar

• LL(1) conflict because ident is start and successor of ()?

• Resolver is based on one more token look-ahead

• Can be generated automatically … but it is tricky (ANTLR does it)

May 10, 2019 Handmade or tool-built? | Kai Nacke 22

Import = (ident ":=")? ident .

bool isAlias() { return lexer.save.moveFront.kind == TokenKind.ColonEqual; }

Even more ideas

• Create LRtool – a parser generator for SLR(1)/LALR(1) grammars

• Output as recursive ascent-descent parser (no parsing tables!)
• Either via data flow analysis or extended left-corner parsing

• Needs much more investigation

May 10, 2019 Handmade or tool-built? | Kai Nacke 23

Feedback welcome!

• Clone the source from https://github.com/redstar/LLtool

• Create an issue at https://github.com/redstar/LLtool/issues

• Write me an e-mail

May 10, 2019 Handmade or tool-built? | Kai Nacke 24

https://github.com/redstar/LLtool
https://github.com/redstar/LLtool/issues

May 10, 2019 Handmade or tool-built? | Kai Nacke 25

Thank you!

Backup

May 10, 2019 Handmade or tool-built? | Kai Nacke 26

Syntax of input file

May 10, 2019 Handmade or tool-built? | Kai Nacke 27

%token identifier, code
%token argument, string
%start lltool
%%
lltool = (header)? (rule)+ .

header = ("%start" identifier
 | "%token" tokenlist
 | "%eoi" identifier)* "%%" .

tokenlist = tokendecl ("," tokendecl)* .

tokendecl = (identifier | string)
 ("=" identifier)? .

rule = nonterminal "=" rhs "." .

nonterminal = identifier (argument)? .

rhs = sequence ("|" sequence)* .

sequence = (group
 | identifier (argument)?
 | string | code
 | "%if" code)* .

group = "(" rhs (")“
 | ")?“
 | ")*“
 | ")+") .

