

intel-intrinsics
Not intrinsically about intrinsics

By Guillaume Piolat

intel-intrinsics
Please use my library

By Guillaume Piolat

This is a talk about performance

Part 1
 Speed is still important

Part 2
 The D SIMD landscape

Part 3
 How intel-intrinsics was made

Part 4
 Choosen examples

Part 5
 I'll tell you to profile your code first

Hello

 Auburn Sounds is a bootstrapped
B2C music app business

 Clients = mostly urban music
producers

 Complexity = about 80 kloc of D

 Open Source core = Dplug

 Competition is 99% C++

Selling audio plug-ins

 Audio plug-ins = small dynlibs that
process audio quicker than real-time

 Fierce competition

 CPU time is shared (~1%)

 Typical commercial plug-in is
between 10x to 300x real-time

100x real-time

Performance an enabler

 Rarely mentionned by B2C consumers as long as
software is fast enough

 Many Quality vs CPU trade-offs
 Speed enables better-sounding algorithms

 Audio not special

Performance an enabler

 Rarely mentionned by B2C consumers as long as
software is fast enough

 Many Quality vs CPU trade-offs
 Speed enables better-sounding algorithms

 Audio not special

 YOUR CUSTOMERS
 PROBABLY
 LOVE PERFORMANCE
 EVEN IF THEY DON'T TELL YOU

 Measure, have a baseline, improve precision
 (cf. Alexandrescu talks)

 Make identified bottlenecks faster

How to get faster programs?

How to get faster programs?

 Measure, have a baseline, improve precision
 (cf. Alexandrescu talks)

 Make identified bottlenecks faster

Single Instruction, Multiple Data helps.

But which D SIMD facility to use?

The D SIMD Landscape

(this image generated with goart.fotor.com)

Option #1: inline assembly

Sample from Dplug, linear texture sampling

Option #1: using assembly

PROS

 Portable across DMD and
LDC

 Predictable

 Debug performance

CONS

 Write twice, for x86 and
x86_64 (except rare cases)

 Hard to write, debug, and read

 Very arch-specific

Option #1: using assembly

PROS

 Portable across DMD and
LDC

 Predictable

 Debug performance

CONS

 Write twice, for x86 and
x86_64 (except rare cases)

 Hard to write, debug, and read

 Very arch-specific

 Rarely the best performance

 Does not get faster over time

Option #2: core.simd

Introduced in 2012.

Option #2: core.simd

PROS

 Portable across DMD, LDC
and GDC

 Easy to read/write/debug

 Pleasant syntax

CONS

 No support in DMD + Win32

 x86 CPU have more
operations than that

 eg :
 PMADDW
 PSHUFB...

Working with the back-end

Working with the back-end

Assembly blocks
may have devastating
overhead

Option #2: core.simd

PROS

 Portable across DMD, LDC
and GDC

 Easy to read/write/debug

 Pleasant syntax

CONS

 No support in DMD + Win32

 x86 CPU have more
operations than that

 eg :
 PMADDW
 PSHUFB...

core.simd is great

Option #3: core.simd + D_SIMD

A DMD extension also introduced in 2012.

PROS

 Good x86 instruction set
support

CONS

 D_SIMD only in DMD

 again, not in Win32

Option #3: core.simd + D_SIMD

Option #4: ldc.simd

Extends core.simd with portable operations:
 shufflevector
 Unaligned load/store
 and more...

Some of it made it back to core.simd

PROS

 All the pros from core.simd

 Portable

CONS

 LDC-specific

 Many x86 operations not
doable:

 eg: ADDSS,
 PMADDW,
 PAVGB...

Option #4: ldc.simd

PROS

 All the pros from core.simd

 Portable

CONS

 LDC-specific

 Many x86 operations not
doable:

 eg: ADDSS,
 PMADDW,
 PAVGB...

Option #4: ldc.simd

Tension
right here

Option #5: ldc.gccbuiltins_x86

Extends core.simd with some x86 builtins

PROS

 Provide direct instruction
generation.

CONS

 LDC only

Option #5: ldc.gccbuiltins_x86

PROS

 Provide direct instruction
generation.

CONS

 LDC only

Option #5: ldc.gccbuiltins_x86

 intel-intrinsics
started as a familiar syntax for
 ldc.gccbuiltins_x86

How intel-intrinsics was made

Implementing _mm_add_ps

ADDPS instruction

With core.simd:

Implementing _mm_add_ss

ADDSS instruction

With ldc.gccbuiltins_x86

LDC 1.1 removed
__builtin_ia32_addss!

ADDSS instruction

With ldc.gccbuiltins_x86

PROS

 Provide direct instruction
generation.

CONS

 LDC only

 The built-ins are disappearing
over time

Option #5: ldc.gccbuiltins_x86

LDC 1.1 removed
__builtin_ia32_addss!

LDC issues #2019, #2250 and #2759

What « intrinsics »?

What « intrinsics »?

The builtins disappeared upstream, in clang.

Life on the other edge

"This is a builtin, not an intrinsic"

A frequently asked question

From http://clang.llvm.org/compatibility.html#vector_builtins

clang 's _mm_add_ss

Vector
extensions

Does it generate the right instruction?

 Realization #1

 Realization #2

 Paradox of « intrinsics »

To optimize normal
D code, you decide
to use « intrinsics »
instead of regular
code to force a

particular instruction

The best way to
implement

« intrinsics »
may well be

normal D code

 Realization #3

SIMD landscape in D

core.simd inline assembly

DMD's D_SIMDldc.simd

ldc.gccbuiltins_x86

intel-intrinsics

LLVM inline IR

uses

uses or emulates

3 surprising things learned

Generating PAVGW

Some instructions need a magic sequence of IR.

NaNs complicate everything

14 ways to compare floating-point numbers, not just 4.

The deadliest cast

No SSE way to convert from
float/double to a 64-bit integer
(in 32-bit x86)

intel-intrinsics today

 Every 516 intrinsics for SSE/SSE2/MMX

 Equivalent of <emmintrin.h>, <xmmintrin.h> and
<mmintrin.h> but for D

192 unittest, tested on beta DMD/LDC with and without
optimizations

 Some #BONUS intrinsics (SIMD log/exp/pow)

 Adds float2 / int2

intel-intrinsics today

 Same semantics for DMD and LDC (slowly emulated on
DMD, mostly optimal on LDC)

 core.simd emulated on DMD because of Win32

 Focused on x86/x86_64 for now

intel-intrinsics tomorrow

 Improve performance when using DMD (leverage
core.simd at the very least)

 Support GDC, be less LDC-exclusive

 ARM

 pragma(inline, true)

Disclaimer : This slide talks about future software changes

PROS

 Brings core.simd when not
available

 Somewhat portable, the goal
is codegen decorrelated from
SIMD semantics (WIP)

 Exact same results whatever
the compiler

 I'm forced to maintain it

CONS

 Possibly slower debug
performance

 Slower DMD performance

 Restricted to SSE/SSE2/MMX
semantics

intel-intrinsics

Insert that one XKCD comic
about standards here

EXAMPLES

Which one is faster ?

dub -b release-nobounds –-combined –-compiler ldc2

Optimized code doesn't have to be ugly

2x s
lower

dub -b release-nobounds –-combined –-compiler ldc2

Unrolled by 4

Unrolled by 2

Which one is faster ? dub -b release-nobounds –combined
--compiler ldc2

Backends are awesome

equal
 perf

Generated code is very similar

One example
that works

Detect spectral peaks in a phase vocoder

pm2 < pm1
pm1 < p0
p0 > p1
p1 > p2

p0
p1

p2pm2

pm1

Using _mm_cmplt_ps
and _mm_movemask_ps

pm2 < pm1
pm1 < p0
p0 >= p1
p1 >= p2

p0
p1

p2pm2

pm1

intel-intrinsics

naive

dub -b release-nobounds --combined

1822 ms

520 ms

1822 ms

(ldc 1.8.0, Win64, 100000 samples)

intel-intrinsics

naive

dub -b release-nobounds --combined

1822 ms

520 ms

1822 ms3.5x faster

Now

Then

TIME

intel-intrinsics

naive

dub -b debug

10981 ms

8075 ms

(ldc 1.8.0, Win64, 100000 samples)

Now

Then

TIME

Expect worse debug performance (inlining)

intel-intrinsics

naive

dub -b release-nobounds –compiler dmd

65 secs

3.307 secs

(dmd v2.084, Win32, 100000 samples)Expect worse DMD performance for now.

Now

Then

TIME

A. Profile your code, measure in the following order:

 Regular D code, array ops...

 Then intel-intrinsics

B. If debug performance
 OR
 DMD performance is important:

 Maybe use both assembly and intel-intrinsics

C. Contributions welcome

Take home message

 Thank you!

Hidden content
2 ways to announce speed-ups to your boss

Strategy #1: Talking about Time

Hidden content

Baseline
600 ms

Challenger
500 ms

 500 / 600 = 0.833…

1 - 500 / 600 = 0.166...

«Challenger takes 16.6 % less time than Baseline »

Hidden content

Baseline
600 ms

Challenger
500 ms

 600 / 500 = 1.2

600 / 500 - 1 = 0.2

« Challenger is 20 % faster than Baseline »

Strategy #2: Talking about Speed

2 ways to announce speed-ups to your boss

Hidden content

« Here is a 16.6 % improvement »

 vs

« Here is a 20 % improvement » ?

 Thank you!

