The how and why of profiling D code

Max Haughton

What is a profiler

Nullius in verba

Produces a report about how the program spends its time for a given
input. Although the dependence on the input is trivial, it is worth keeping
in mind as performance is often dominated by patterns not inherent to the
(machine) code that makes up the program.

Information produced is typically fairly dumb. The profiler can't tell you to
change algorithm, but can tell you how to make your algorithm faster.

The time taken is not the only thing that can be profiled: Memory
allocation may be more important, or in a multithreaded environment one
may be solely interested in contention.

When to profile?

Nullius in verba

The program is running slowly -> Profiling should hopetfully reveal issues
that can be resolved.

There is an (informal) Pareto Principle involved: 20% of the work yields 80%
of the speedup.

Although profiling is typically (and mostly should be) reserved for
diagnosing performance issues, it can also yield important understand of a
program: A program may be bug free, but misunderstood in that the ratios
of different work within the program may be different to the assumptions the
program was designed around.

Benchmarking and profiling aren’t the same thing, but it’'s worth mentioning
that doing the former regularly and the latter every now and again can do
wonders in terms of keeping track of just how “fast” your code really is.

Profiler taxonomy

What kinds of profilers are available?

o After identifying what we want to measure (e.g. time or memory), how to do we
go about data acquisition?

o Instrumentation: Add a hook to measure the data we're interested in, which is
then stored and processed later. The naive approach (instrument everywhere),

can lead to very complete but contextless data. And potentially a lot of overhead,
YMMV.

o Sampling: Interrupt process, collect data, keep going, repeat. Much lower
overhead.

o« More feature complete sampling profilers (e.g. VTune) provide APIs for
instrumentation and tracing. Other's follow a hybrid approach e.g. Tracy.

« Emulation: Run the program in an emulated environment, collect very fastidious
but synthetic data. Valgrind's callgrind and cachegrind are famous examples.

Sampling what exactly
While better than nothing, -profile leaves much to be desired.
« We mentioned sampling betore, but what will we sample.

« We need to measure the quantity we're interested in, obviously, but we
also need to save where we got that data.

o Saving the instruction pointer is easy, but we need the full context so the
callstack is superior.

Caveman profiling
Jesus' Blood Never Failed Me Yet

o Before looking at a true scotsman's profiler let's reject modernity and return to menke
basics by thinking about how we could approximate a profiler with a humble debugger.

o Just use your debugger, get a few backtraces.

o A few samples and your brain can go a very long way, however the practical utility of
this method is very limited. Data acquisition is annoying, data processing even more so.

« This method’s utility is much better on program with some notion of progress e.g. a
simple % completion metric or even verbose output (so you know what is actually going
on).

o If, however, the program is slow enough to be considered faulty in some way, 1.e.
blocked on some device, service, or library then this can be very useful.

Frame pointers

Something to keep in mind

o Sampling the call stack requires getting the instruction pointer, and being able
to walk the call stack. First part is easy, second part not so much.

e On X86, omission of the frame pointer can let the compiler play with one more
register at the expense of debugability.

 Debug info now means these frame pointers are not necessary, however a
profiler might get this wrong (so worth keeping in mind)

o Always profile with debug symbols if possible.

o If needed, use "-gs" for dmd, "-fno-omit-frame-pointer" for GDC, or "--frame-
pointer=all" for ldc

A simple instrumenting profiler

Profiling a contrived example using dmd's builtin profiler

%nt add(int x, int y)

int add(int x, int y) The compiler turns char[] loc = "add";

1 [LHS into RHS trace_pro (loc);
return x + vy, const res = X + vy,

\ (simplified) _c_trace_epi();
return res;

}

The pair of functions (prolog and epilog, to be clear) are in druntime, they collect timing information,
which is then stored and printed upon program exit.

The data is outputted to a file called trace.log, or if this file already exists the new data will be merged.
For this reason, delete the log file on each run.

See D & Digital Mars website for history of the feature.

Is that it then?

While better than nothing, -profile leaves much to be desired.

e Only instrumented functions are seen in the profile. This is potentially
catastrophic for some programs, e.g. IO bound workloads, calls into non-
root module functions etc

o The feature makes a valiant attempt to sample the call graph, but not the
call stack. This is not ideal - more on that next.

e Data is only collected at the function-level.
o Potentially very high overhead, especially if a function.

e We can do better.

Profiling allocations with dmd

Don't fear the reaper - how to easily profile GC allocations

o Instrumentation is not great for profiling time, but for profiling allocations
it's very useful.

o« Overhead? Recorded data unaftected, allocation is slow anyway so time
not an 1ssue.

o Compile with "-profile=gc”

o Heap profiling does not have to be integrated with the language, but it's
helpful to know the exact type of an allocation.

GC profiling example

Dirty deeds done dirt cheap (But still really useful)

class Data {
int Xx;

1. Compile with —profile=qgc
2. Run program

3. Inspect the log (located at profilegc. Log)

bytes allocated, allocations, type, function, file:line
18400 50 ubyte[] D main alloc.d:11 1600 50 alloc.Data D main alloc.d:12

Really useful? Allocations can (and usually are) very slow - a good
malloc implementation on the hot path might still be hundreds of
instructions (note: instructions, this measure doesn't even take the
cache into account!)

vold main()

foreach(int elem; 0..50)

}
1
{
}
}

18400 bytes allocated / 50 allocations

auto buf = new ubyte[](256);
1600 bytes allocated / 50 allocations
auto encapsulated = new Data;

/* Do work */

Visual Studio Code integration! (Say thanks to WebFreak)

Beyond contrived examples.

Towards "real" code

o Basics first: You can't really optimize add, and it was probably inlined
anyway.

o Programming practice can lead to a relatively obscure mapping of name
to task. OOP: horses vs. chickens.

o Let's look at a profile of dmd compiling hello world.

An Informative i1ota

A small profile of non-trivial program

- int dmd.mars.tryMain(ulong, const(char)**, ref dmd.globals.Param)
+ 26.75% Module::importAll
- 9.10% DsymbolSemanticVisitor::visit
DsymbolSemanticVisitor::visit
- DsymbolSemanticVisitor::visit
- 3.55% DsymbolSemanticVisitor::visit
- 2.10% DsymbolSemanticVisitor::funcDeclarationSemantic

typeSemantic
dmd.mtype.Type dmd.typesem.typeSemantic(dmd.mtype.Type, ref const(dmd.globals.Loc), dmd.dscope.Scope®).visitFunction(dmd.mtype.TypeFunction)

+ dmd.mtype.Type dmd.typesem.merge(dmd.mtype.Type)

o Collected using call stack sampling.

e Due to a quirk of c++ demangling and the visitor pattern, this information
is basically lost without CSS.

o Alternative is just a list of functions that appeared in samples, which isn't
great.

So, what are we looking for?

We know what we want, we don’t know (yet) how to get it.
o« Low overhead - zero is impossible, but we can get close.

o Call stack sampling is a must-have.
o Source level profiling is very nice to have (but requires debug info)
o Full complement of information from the hardware (more on that later).

e Cross-platform?

Profiling with perf

The Second Best Secret Agent In The Whole Wide World

« The Linux Kernel exposes a subsystem called perf event to read performance counters in a mostly
platform agnostic way, perf is the canonical frontend to it.

e perf list reveals more than just measuring time. A long list of hardware and software events are
presented. Page faults, for example, are a very handy thing to keep an eye on.

o perf has a lot of functionality out of the box, also serves as the basis for several other tools (profilers,
optimizers etc.). A jack of all trades, master of some.

o Although the tool aims to be platform agnostic (and for the first 80% of performance problems it is),
some architectures are more equal than others.

o perfis also part of (and can act as a frontend for) a rich set of tracing utilities covering both userspace
and the kernel itself. These are a talk all by themselves (more for profiling systems than code), so 1
won't cover them. See Brendan Gregg's excellent website to learn more about it than you'll ever get to
use in anger unless you work for Netflix.

Perf workflow

A basic recipe for using pert

1. Start with "perf record -—g"to collect data and sample callstacks - use
"—-e ..."toenable specific performance counters (as elaborated on later)

2. "perf report" will open a fairly nice TUI for you to navigate the data
collected

3. "perf annotate" annotates the assembly and source code (albeit not
very ichthyomorphically) with collected data.

GUI profilers (and windows...)
The Second Best Secret Agent In The Whole Wide World

o pertis very good at getting data onto your screen, however the interface is
not the best for exploring the data.

o There is a pretty good GUI for pert called hotspot (See slide about flame
graphs), but doesn't quite compare to the following tools.

o CPU designers provide tooling for getting the most out of their processors
when profiling: Intel has vTune (amongst many other tools), AMD has
uProf.

o Pertf's source annotation tool is functional and usetful but a bit 1980s. The
aforementioned tools are quite a bit better.

Flame Graph

[can see clearly now

A really handy way of looking at a profile's callstack data without going insane. A flame
graph is a big stack of boxes: the x-axis indicates frequency, the y-axis is stack depth.

The x-axis is ordered alphabetically, NOT by time. This is so identical frames can be
merged.

Simple code will likely have a very simple flame graph, the utility of the technique comes
in larger projects.

How to generate one? Available from the Profilers Hotspot, vTune, uProf, a few others. To
generate one standalone, Brendan Gregg has a popular tool.

_D3stdérandom__ T7uniformVAyaa2_5b29TiTiTSQBnQBm_ T21MersenneTwisterEngineTkVmi32Vmi624Vmi397Vmi31Vki2567483615Vmi11Vki4294967295Vmi7Vki2636928640Vmi15Vki4022730752Vmi18Vki1812433253ZQFcZQGoFNaNfiiKQGhZi
D3stdérandom T7uniformVAyaa2 5b29TiTiZQyFNfiiZi
_D3wowQeFZv
_Dmain
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ6runAlIMFZ9 _lambda2MFZv
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ7tryExecMFMDFZvZv
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ6runAlIMFZv

_D2rt6dmain212_d_run_main2UAAamPUQgZiZ7tryExecMFMDFZvZv
_d_run_main2
_d_run_main
main
__libc_start main
[ROOT]

Flame Graph

Function HotSpots
Metrics

Flame Graph

Call Graph

Counters: CYCLES_NOT _IN_HALT * Process IDs: [3168393] dmd

Click on any block in Flame Graph to focus on it's children.

_D3dmd10dsymbolsem22DsymbolSemanticVisitor5visitMRCQBx7dstruct17StructDeclarationZ_T10_lambda11TCQDt7dsymbol7DsymbolZQBiMFQBaZv...

D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQuZvZv
DsymbolSemanticVisitor::visit(StructDeclaration*)
StructDeclaration::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::attribSemantic(AttribDeclaration*)
DsymbolSemanticVisitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(VisibilityDeclaration*)
VisibilityDeclaration::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::attribSemantic(AttribDeclaration*)
DsymbolSemanticVisitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(StorageClassDeclaration*)
StorageClassDeclaration::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::attribSemantic(AttribDeclaration*)
DsymbolSemanticVisitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(ConditionalDeclaration*)
ConditionalDeclaration::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::attribSemantic(AttribDeclaration*)
DsymbolSemanticVisitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(VisibilityDeclaration*)
VisibilityDeclaration::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
_D3dmd10dsymbolsem22DsymbolSemanticVisitor5visitMRCQBx7dmodule6ModuleZ_T9_lambda3TCQDf7dsymbol7DsymbolZQBgMFQBaZv
D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQuZvZv
DsymbolSemanticVisitor::visit(Module*)
Module::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::visit(Import*)
Import::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::attribSemantic(AttribDeclaration*)
DsymbolSemanticVisitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(VisibilityDeclaration*)
VisibilityDeclaration::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
_D3dmd10dsymbolsem22DsymbolSemanticVisitor5visitMRCQBx7dmodule6ModuleZ_T9_lambda3TCQDf7dsymbol7DsymbolZQBgMFQBaZv
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQuZvZv
DsymbolSemanticVisitor::visit(Module*)
Module::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::visit(Import*)
Import::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
_D3dmd10dsymbolsem22DsymbolSemanticVisitor5visitMRCQBx7dmodule6ModuleZ_T9_lambda3TCQDf7dsymbol7DsymbolZQBgMFQBaZv
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQvZvZv
DsymbolSemanticVisitor::visit(Module*)
Module::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
DsymbolSemanticVisitor::visit(Import*)
Import::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)
_D3dmd10dsymbolsem22DsymbolSemanticVisitor5visitMRCQBx7dmodule6ModuleZ_T9_lambda3TCQDf7dsymbol7DsymbolZQBgMFQBaZv
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQvZvZv
DsymbolSemanticVisitor::visit(Module*)
Module::accept(Visitor*)
dsymbolSemantic(Dsymbol*, Scope*)

Zoom Entire Graph

Semantic2Visitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(StorageClassDeclaration*)
StorageClassDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Module*)
Module::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Import*)
Import::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AggregateDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(StructDeclaration*)
StructDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AggregateDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(StructDeclaration*)
StructDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(VisibilityDeclaration*)
VisibilityDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(StorageClassDeclaration*)
StorageClassDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(ConditionalDeclaration*)
ConditionalDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(VisibilityDeclaration*)
VisibilityDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Module*)
Module::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Import*)
Import::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(AttribDeclaration*)
ParseTimeVisitor<ASTCodegen>::visit(VisibilityDeclaration*)
VisibilityDeclaration::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Module*)
Module::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Import*)
Import::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Module*)
Module::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Import*)
Import::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
Semantic2Visitor::visit(Module*)
Module::accept(Visitor*)
semantic2(Dsymbol*, Scope*)
_D3dmd4mars7tryMainFmPPxaKSQz7globals5ParamZi
_Dmain
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ6runAlIMFZ9_lambda2MFZv
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ7tryExecMFMDFZvZv
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ6runAlIMFZv
_D2rt6dmain212_d_run_main2UAAamPUQgZiZ7tryExecMFMDFZvZv
_d_run_main2
_d_run_main
main
_libc_start_main

_D3dmd5parse_T6Pa... _ _D3dm...
_D3dmd5parse_T6ParserT... _D3dmd...
_D3dmd5parse_T6ParserT... _D3dmd...
_D3dmd5parse_T6ParserT... _D3dmds...
_D3dmd5parse_T6ParserT... _D3dmd5p...
_D3dmd5parse_T6ParserT... _D3dmd5par...
_D3dmd5parse_T6ParserT... _D3dmd5pars...
_D3dmd5parse_T6ParserTs... _D3dmd5pars...
_D3dmd5parse_T6ParserTs... _D3dmd5pars... D..._
_D3dmd5parse_T6ParserTs... _D3dmd5parse... _D3dmd...
_D3dmd5parse_T6ParserTS... D... _D3dmd5parse_..._D3dmd5le
_D3dmd5parse_T6ParserTSQ... D3dm... D3d... = _D3dmd5parse_T6ParserTSQw10astcode...
_D3dmd5parse_T6ParserTSQ... D3dmd5Slexer5... _D3dmd5Sparse_T6ParserTSQw10astcodege...
_D3dmd5parse_T6ParserTSQw10astcodegen10A... D3dmd5Sparse_T6ParserTSQw10astcodegen...
D3dmd5parse T6ParserTSQw10astcodegen10A... D3dmd5parse_T6ParserTSQw10astcodegen...
_D3dmd5parse_T6ParserTSQw10astcodegen10A... D3dmd5Sparse_T6ParserTSQw10astcodegen...
_D3dmd5parse_T6ParserTSQw10astcodegen10A... D3dmd5Sparse_T6ParserTSQw10astcodegen...
_D3dmd5parse_T6ParserTSQw10astcodegen10A... D3dmd5Sparse_T6ParserTSQw10astcodegen...
_D3dmd5parse_T6ParserTSQw10astcodegen10A... D3dmd5parse_T6ParserTSQw10astcodegen...
_D3dmd5parse_T6ParserTSQw10astcodegen10A... D3dmd5parse_T6ParserTSQw10astcodegen...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk13parseDecIDefsMFiPCQCu7dsy...
D3dmd5parse T6ParserTSQw10astcodegen10ASTCodegenZQBk10parseBlockMFPCQCq7dsymb...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk13parseDeclDefsMFiPCQCu7dsy...
D3dmd5parse T6ParserTSQw10astcodegen10ASTCodegenZQBk10parseBlockMFPCQCq7dsymb...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk13parseDeclDefsMFiPCQCu7dsy...
D3dmd5parse T6ParserTSQw10astcodegen10ASTCodegenZQBk10parseBlockMFPCQCq7dsymb...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk13parseDeclDefsMFiPCQCu7dsy...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk10parseBlockMFPCQCq7dsymb...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk13parseDecIDefsMFiPCQCu7dsy...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk10parseBlockMFPCQCq7dsymb...
_D3dmd5parse_T6ParserTSQw10astcodegen10ASTCodegenZQBk13parseDeclDefsMFiPCQCu7dsy...
D3dmd5parse T6ParserTSQw10astcodegen10ASTCodegenZQBk11parseModuleMFZPSQCs4root...
_D3dmd7dmodule6Module_T11parseModuleTSQBI10astcodegen10ASTCodegenZQBrMFZCQCuQ...
Module::parse()

_D3dmd7dmodule6Module4loadFKxSQBc7globals3LocACQBt10identifier101dentifierQBcZCQCzQC...

Import::load(Scope*)

Import::importAll(Scope*)
_D3dmdéattrib17AttribDeclaration9importAlIMRPSQBs6dscope5ScopeZ_T9_lambdadTCQCy7ds.
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQu...

AttribDeclaration::importAll(Scope*)
_D3dmdéattrib17AttribDeclaration9importAlIMRPSQBs6dscope5ScopeZ_T9_lambdadTCQCy7ds...
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array_T5ArrayTCQCeQCd7DsymbolZQxMDFQu...

AttribDeclaration::importAll(Scope*)
_D3dmdéattrib17AttribDeclaration9importAlIMRPSQBs6dscope5ScopeZ_T9_lambda4TCQCy7ds...
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array_T5ArrayT(QCeQCd7DsymbolZQxMDFQu...

AttribDeclaration::importAll(Scope*)
_D3dmdéattrib17AttribDeclaration9importAlIMRPSQBs6dscope5ScopeZ_T9_lambdadTCQCy7ds...
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayTCQCeQCd7DsymbolZQxMDFQ...

AttribDeclaration::importAll(Scope*)

Module::importAll(Scope*)

Import::importAll(Scope*)

D3dmdSpar... D3d...
.. _D3dmd5par..._D3dm

_D3dmd5parse_T6Par... _.

_D3dmd5parse_Té6Par... D3...
_D3dmd5parse_T6ParserTsQ... _...
_D3dmd5parse_T6ParserTsQ... ...

_D3dmd5parse_T6ParserTSQw10a...
_D3dmd5parse_T6ParserTSQw10a...
_D3dmd5parse_T6ParserTSQw10a...
_D3dmd5parse_T6ParserTSQw10a...
_D3dmd7dmodule6Module_T11pa...

Module::parse()

_D3dmd7dmodule6Module4loadFK...

Import::load(Scope*)

_D3dmdeéattrib17AttribDeclaration9importAllMRPSQBs6dscope5ScopeZ_T9_lambdadTCQCy7dsymbol7DsymbolZQBgMFQBaZv
_D3dmd7dsymbol14foreachDsymbolFPSQBf4root5array T5ArrayT(QCeQCd7DsymbolZQxMDFQvZvZv

AttribDeclaration::importAll(Scope*)
Module::importAll(Scope*)
Import::importAll(Scope*)
Module::importAll(Scope*)
Import::importAll(Scope*)
Module::importAll(Scope*)

= U LV LV T LKV T nown
o || |[22 [&% ([[|| S o
s s s & i g s |le— 1lar Jie |Ie I3

o B wn
ol g0 B

se...
Se...
Pa...

se...
Se...

Par...
Str...
se...

e Se..

Te...

D3...
D3...
D3...
D3...
reso...
Stat...
Fore...
stat...
Stat...
Com...
stat...
Sem...
Func...
semantic...
Semantic3...
Module::a...
semantic3...

Reliable data

You can tame the chaos

I cr
[cp
| cr
[Jcp
I cr
I cr
I cr
[cr

Random snapshot of CPU Utilization while writing this slide

« If you are going to go to war based on a profile, you may want to make sure your data is consistent.

e This1s mostly something to keep in mind when benchmarking rather than profiling, but the
techniques can nonetheless be useful.

e Some metrics are reliable (i.e. an instruction is always an instruction regardless of how long it takes),
but other measurements can be dependant on transient (extrinsic) properties of a particular run.

« Power management (laptops especially) is something processor companies beat each other to death
over, so the processor will often be extremely aggressively turned down / turned-off to save power).

« Example:If the CPU Freq is turned down relative to the (say) speed of memory, memory latency now
looks better than previously.

o Should you bother? Depends on who owns the computers your code is going to run on.

A little microarchitecture

Nowhere near enough time to go into detail, but enough time to build intuition (hopefully)

Stages of an instruction's execution: Fetch, Decode, Execute, Writeback (ignore memory for now)

Can we overlap them? Yes, iIn many cases we can overlap their executions
We have just decreased our
CPI from 4 cycles per
e e

When can't we? Hazards. If we have a write-after-read dependency, then we will have
to induce a stall - i.e. wait for the result of instruction 1 so instruction 2 can use it.

A little microarchitecture

Nowhere near enough time to go into detail, but enough time to build intuition (hopetully)

We have CPI >=1, i.e. a scalar processor.
If we have CPI < 1, then we have a superscalar processor. A modern processor is very superscalar.

At the expense of complexity and power usage, we can have a processor be out-of-order: The

processor can do independent work independently (ideally in parallel by using a superscalar
backend).

Speculation: In a modern OOO superscalar processor, speculation (doing work based on a guess
rather than a guarantee) is the default state of being. Branch Prediction is very successful, making
deep speculation possible.

See Tomasulo's algorithm for how this actually works, in any computer architecture book (all 2 of
them)

To learn how these are techniques are actually implemented, Agner Fog produces a detailed
monograph on processor architecture.

The memory hierarchy

It's the memory stupid!
e Processors have become much faster than their memory.

 The techniques mentioned previously allow the processor to alleviate some of
that, e.g. by doing other work while waiting for memory.

o Despite ever-increasing amounts of memory allocated to programs, memory
access remains predictable and local - spatial locality, temporal locality.

« The chip designer has a choice between big and slow, or small and fast. Rather
than choosing one, your processor has a memory hierarchy - multiple levels of
tradeoffs between latency, bandwidth, and size (and power usage).

e You can do some serious work in the time taken by missing a level of this memory
hierarchy, so memory is practically the number one thing to keep an eye on.

Historical memory latencies

A classic latency test

e Random selection of old and
NEewW Processors

e 12900K is the brand new Intel
chip.

« Not much has changed.
Things have been getting
faster, of course, but not quite

o Notice the straight line, then a
bump then a (slightly mangled)
straight line, these are the
gradations between different
levels of the (data) caches.

—
«
~—
=
&
o
()
o
©
~]

Cache and Memory Latency

1,024
Region Size

chipsandcheese.com

— ANMD Athlon
64 X2
4200+

e ANMD
FX-8350
Intel Core
19-12900K.

http://chipsandcheese.com

There's always leaks - Spectre and Meltdown

Famous proof that speculation is not all good.

Speculation: Great when it's right, what happens when the processor guessed wrong?
Processor guesses wrong, bails out, end of story? Not quite.

If we can find a side channel and make the CPU touch it in a speculative/transient
operation (nomenclature varies in lit.), we can extract sensitive information.

We can! Trick the processor into doing an operation speculatively, use that result as an
index into an array.

Time the accesses to this array, do some basic arithmetic, you know which one was
transiently accessed, that's the result of the work you made the processor do.

You can now access any virtual memory. Meltdown (same rough idea) let's you access
any physical memory!

Performance counters

Smarter profiling.

o As the processor goes about running your code, it
keeps track of the statistics of execution types, stalls,

etc 32KB

Instruction Cache

« Using the techniques mentioned previously, we can ey 10p Cache
relate code to how long it took and why it took so]
10ng. pop Queue

Allocate / Rename / Move Elimination / Zero Idiom

e On Linux, using these is easy (you may need to set

your perf event paranoid setting) - just use perf with Scheduler
1 1 . . |
the "-e" flag as mentioned previously. o TEL WEGSL WY :
. . . Store || joad || STA || load || STA ALU
« On Windows, you need a profiler like vTune or uProf = o
and a special driver which will be installed with that e oIV
profiler. FMA®

512KB L2 Cache ALU* ALU
o Example: Port utilization - the CPU dispatches work shuftles | | shutfe
to execution ports, you can use performance —
counters to track the frequencies of how many your
code was able to utilize (a low number is an

indication you can't pull in data fast enough).

Figure 2-1. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture’

viune

Smarter prOﬁ_llng. Elapsed Time : 43.609s
Clockticks: 12'“;'171'\))('"' , o .
° Thanks to TMAM (TOp-dOWIl ;Fi Retired: 41[61””{"" }-:::fs';]qeffllléc;?l};z Ith?ltb’;']e

significant fraction of
. . . MUX Reliability @ 1.000 execution pipeline slot
MlcrOarChlteCture AnalYSlS Retiring 13.0% of Pipeline Slots gé:chilbglstJall‘l):dldue toS
- Driand G LY f Dineline Slatc demand memory load and
. SHE R e SR e e tores. Use Memory
Method) we can synthesize all Bad Speculation © 03% of Pipeline Siots RN TRAEI O O e
Onrl Eed D 93 2% R of Pineline Slots the metric breakdown by

these counters into a cohesive | Pipelne St il ey

memory bandwidth

information, correlation by

View like Shown On the RHS _: | H : memory objects.

» This is an example of memory Ltency O 8.1% N of Clockicks
5Q Full; 0.0% of Clockticks .
bOund COde. D “ iC e _ PCKUCKS This diagram represents inefficiencies in CPU usage. Treat it as a pipe with an output flow
viemory banawidtn . 922.U% OT CIOCKTICKS

equal to the "pipe efficiency” ratio: (Actual Instructions Retired)/(Maximum Possible
Instruction Refired). If there are pipeline stalls decreasing the pipe efficiency, the pipe

shape gets more narrow.

e« Only vTune is able to do this
well.

« Note that 65% of memory
accesses are missing the cache
entirely, so we have O-ports
exercised most of the time.

viune

Pause the video and take a look

B Intel VTune Profiler

Project Navigator + 0O & Welcome r003ue

Microarchitecture Exploration Microarchitecture Exploration ~ ® 7 INTEL VTUNE PROFILER
Analysis Configuration Collection Log Summary Bottom-up Event Count Platform multiply.c

Source Line A Source Clockticks Instructions Retired | CPI Rate

VT
» Il chh

Retiring Front-End Bound

~ @ sample (matrix)
rO00hs
r001ue
r002ps
r003ue

8,706,600,000 1,293,600,000 6.731 0.1%
1,178,927,400,000 316,012,200,000 3.731 12.9%
8,635,200,000 1,428,000,000 6.047 0.1%

This example is C, works absolutely fine with D bar demangling.

viune
Threads

O: o Os 0.55 1 5s 3s 3.55 4 Thread <
] Thread (TID: 18160) A ' - . " R ; - U - ' R L | " i ' ‘ ' 2 [l Running
= Trrend (TID- 24796 aa CPU Time
- #aa Spin and Overhead Ti...
Thread (TID: 26984) () @ Clocktick Sample
Thread (TID: 20272) CPU Time
Thread (TID: 23124) gaa CPU Time
#aa Spin and C 1 Ti..
System Bandwidth
g Total, GB/sec

Thread (TID: 27
Thread (TID:

Thread (TID: 22
Thread (TID:

Thread (TID:

Thread (TID: 28
Thread (TID: 24064)
Thread (TID: 2784¢
Thread (TID:

CPU Time

System Bandwidth

viune

Latency

Latency Histogram

This histogram shows a distribution of loads per latency (in cycles).

§0,000.000

Coz - A causal profiler
A very different way of doing things

o Previously we emphasized sampling profilers as the way to go.

o Cozis a bit different. It performs performance experiments. We try to
measure how much a given line contributes to the speed of a program by
slowing the rest of the program down.

 Mainly intended for profiling multithreaded code.

Tracy - A frame profiler

o Tracy is a profiler intended for profiling video games

o It's linked with the program being profiled, and is activated on a per-frame
basis

o Data is collected externally via a socket
e Cross-plattform.
o Rapidly gaining features.

o« Game development exposes it to new ideas in concurrency and
parallelism

The end

e Questions?

