
Funkwerk Systems GmbH | Traditonal. Innovatve. SOLUTIONS.

Taming immutable with librebindable
Have you ever tried using immutable structs in D? Have you ever succeeded?

© Funkwerk Systems GmbH |

2

Taming immutable with librebindable

● Refresher:
● We write software following Domain-Driven Design.

– "Treat the value object as immutable. Make all operations side-efect-free functions
that don’t depend on any mutable state.
...
Domain events are ordinarily immutable, as they are a record of something in the past."
 – Domain-Driven Design Reference

● Data being manipulated by domain code should never be mutated!
– Instead, always return new data.
– Makes code testable, predictable, avoids spooky action at a distance.
– Heavy use of UFCS chains of ranges to keep memory usage limited.

● If possible, we want to guarantee this statically.

Domain-Driven Design

© Funkwerk Systems GmbH |

3

Taming immutable with librebindable

● Our traditional code:

● template based:
– slow to build, high memory usage
– brittle, sensitive to compiler changes

● nontransitive: potential copy of array_
needed

We want to use immutable.

● What we would like:

● simple
● fast
● readable
● cheap invariant checks: only in the

constructor
● transitive: no dup on get

immutable struct ArrayContainer
{
 int[] array;
}

struct ArrayContainer
{
 @ConstRead
 private int[] array_;
 …
 mixin(GenerateFieldAccessors);
}

© Funkwerk Systems GmbH |

4

Taming immutable with librebindable

● We want to use immutable data types.
● We want to use ranges.
● We also use a lot of associative arrays.
● But immutable data types break many ranges, and don’t work with associative

arrays!

Error: cannot modify struct instance `extremeElement` of type `S` because it
contains `const` or `immutable` members

But we can’t use immutable!

immutable struct S { int i; }
…
auto list = [S(2), S(4), S(3)];
assert(list.maxElement!“a.i“ == S(4);

© Funkwerk Systems GmbH |

5

Taming immutable with librebindable

Error: cannot modify struct instance `extremeElement` of type `S` because it
contains `const` or `immutable` members

● This keeps happening, and it will keep happening.
● Why?
● It is extremely intuitive that this should work:

But we can’t use immutable!

immutable struct S { int i; }
…
auto list = [S(2), S(4), S(3)];
assert(list.maxElement!“a.i“ == S(4);

T fun(T)(T arg1, T arg2) {
 T result = arg1;
 result = arg2;
 return result;
}

© Funkwerk Systems GmbH |

6

Taming immutable with librebindable

● Maybe we can just do this?

● Unqual strips immutable from immutable struct, but the felds are still immutable!
● This was a surprise to me:

● Error: cannot modify struct instance `s` of type `S` because it contains `const`
or `immutable` members

● s.i is still immutable int! The Unqual, it does nothing!

The solution is not Unqual!

immutable struct S { int i; }
void main() {
 Unqual!S s;
 static assert(!is(typeof(s) == S));
 s = S(5);
}

T fun(T)(T foo, T bar) { Unqual!T result = foo; result = bar; return result; }

© Funkwerk Systems GmbH |

7

Taming immutable with librebindable

● Important to understand the
actual danger!

● The problem is not mutating
an immutable feld.

● The problem is observing
an immutable reference
change its value.

What actually goes wrong if you overwrite immutable?

immutable struct S {
 int field;
}

void genericFun(T)(T first, T second) {
 auto store = first;
 immutable int* ptr = &store.field;
 int firstField = *ptr;
 store = second; // danger!
 int secondField = *ptr;
 // This fails!
 assert(firstField == secondField);
 // We have observed an immutable pointer
 // change its value.
 // All is lost, etc.
}

© Funkwerk Systems GmbH |

8

Taming immutable with librebindable

● Maybe we can relax the const system with headmut?
– We cannot wait for possible future features!

● Can we do headmut in a library?
● First attempt: Turducken types.
● Our type T, packed in a struct, packed in a union. ¹
● Because it’s a struct, we’re allowed to use

std.algorithm.mutation.moveEmplace()
even though T has immutable members

● Because it’s a union, the destructor is not called!

Possibilities that we discarded

struct Turducken(T) {
 Turkey store;
 struct Turkey {
 Duck duck;
 }
 union Duck {
 Chicken chicken;
 }
 alias Chicken = T;
}

¹ Thanks @n8sh!

© Funkwerk Systems GmbH |

9

Taming immutable with librebindable

● Because it’s a struct, we’re allowed to use
std.algorithm.mutation.moveEmplace()
even though T has immutable members

● Because it’s a union, the destructor is not called!
– We can control the lifetime!
– Yes, this is intentional!
– Why do we need to control the lifetime?

headmut: we want to overwrite an already
stored value.

● Downsides: founded on quicksand, undefned
features, and bugs.

● Can break any day, or if you look at it wrong.
● Not a good solution.

Turducken Types

struct Turducken(T) {
 Turkey store;
 struct Turkey {
 Duck duck;
 }
 union Duck {
 Chicken chicken;
 }
 alias Chicken = T;
}

© Funkwerk Systems GmbH |

10

Taming immutable with librebindable

● What’s the simplest thing that could work?

● GC issue with precise scan:
– void[n] is always treated as pointers.

● What we want is a type "like T, but mutable": DeepUnqual!

How to write a headmut

align(T.alignof)
struct HeadMut(T) {
 void[T.sizeof] data;
}

© Funkwerk Systems GmbH |

11

Taming immutable with librebindable

DeepUnqual to the rescue!

struct {} { DeepUnqual!member for each member }

union, K[V] void[T.sizeof]

class, interface, function, T* void*

T[] { length, ptr }

delegate { void*, void* }

basic type T Unqual!T

T[5] DeepUnqual!T[5]

● rebindable.DeepUnqual defnes equivalent types for every D data type.
● Mutable pointers in the same place, mutable nonpointers in the same place.
● Otherwise, nothing in common.

© Funkwerk Systems GmbH |

12

Taming immutable with librebindable

● DeepUnqual!T will be scanned by a precise GC at exactly the felds that T will be
scanned

● Same size
● Same alignment (chaotic neutral)
● Working with it is deeply unsafe.
● You have to cast everything.

DeepUnqual to the rescue!

Rebindable!T

 T get():

void set(T);

??? mystery???

T goes in, T comes out
never a miscommunication

© Funkwerk Systems GmbH |

13

Taming immutable with librebindable

● How do I store a T in it? How do I get a T back out?
● rebindable.Rebindable wrapper!

– Rebindable value;
– value.set(S(5));
– assert(value.get == S(5));
– Even if S is immutable.

But is this safe?

DeepUnqual to the rescue!

Rebindable!T

 T get():

void set(T);

??? mystery???

T goes in, T comes out
never a miscommunication

© Funkwerk Systems GmbH |

14

Taming immutable with librebindable

● It’s safe precisely so long as T is secret.
● D immutable mashes together memory immutability and observability.
● We don’t care if a value changes, so long as we can never observe it changing.
● Rebindable!T is a boxed T.
● It is never possible to get a reference to the contained data in T form, because get

returns by value.
● The stored data is mutable thanks to DeepUnqual, so mutating it is arguably correct:
Rebindable!T never mutates memory that was not declared as mutable.

● And the memory itself is not exposed as immutable, but get returns an immutable
value copy.

Is it secret? Is it safe?

© Funkwerk Systems GmbH |

15

Taming immutable with librebindable

● The stored data is mutable thanks to DeepUnqual, so mutating it is arguably correct:
Rebindable!T never mutates memory that was not declared as mutable.

● And the memory itself is not exposed as immutable, but get returns an immutable
value copy.

● While the data is stored in Rebindable, it can change, but every change must be from
a valid state to a valid state, and we can never catch it in mid-change.

● Weakness: T cannot rely on the fact that every address it lives at was created by a
constructor or copy constructor call.
● If the copy constructor monkeys around with feld addresses, it will break.

Is it secret? Is it safe?

© Funkwerk Systems GmbH |

16

Taming immutable with librebindable

● librebindable ships with:
● immutable-safe Nullable, rebindable.Nullable:

Nullable!(const int) ni;
assert(ni.isNull);
ni = 5;
assert(!ni.isNull && ni.get == 5);
ni.nullify;
assert(ni.isNull);

● immutable-safe associative arrays, rebindable.AssocArray:

AssocArray!(int, S) assocArray;
assocArray[0] = S([5]);
assocArray[0] = S([6]);
assert(assocArray[0] == S([6]));

What can we do with this?

© Funkwerk Systems GmbH |

17

Taming immutable with librebindable

● Is immutable too strong? Should we be able to overwrite immutable felds?
● No: immutable is too weak!
● The problem is that we can observe immutable felds changing.
● By default, we can just do &i and get a permanent view at i: &i is immutable(int)*,

but may change value!
● What’s stronger than immutable? rvalue!
● For the non-compiler developers: An assignment has the form:

– left value = right value;
– So "lvalue" = "anything that can appear on the left of an assignment operator."
– And "rvalue" = "anything that can only appear on the right side of an assignment

operator."

Proposal: Referenceability is the &root of all evil.

© Funkwerk Systems GmbH |

18

Taming immutable with librebindable

● lvalue = rvalue;
● A hypothetical rvalue struct {} can be stronger than immutable and still be overwritten by

assigning a new value!
● rvalue struct is a pure data struct: no taking the address of felds, no referencing felds, no

assigning felds directly.
● Why? We need not fear mutation because nobody can catch us in the act.
● And if we only assign newly constructed values of T, we never break invariant either.
● A pure, rvalue variable is stronger than immutable: it is unreferenceable, and hence,

unobservable.
● In fact, it is memoryless: it cannot be thought of as "data stored at an address in memory",

but only as "data in itself".
● Its value may be read, but its felds are not remotely observable – because they are Plain Old

Values.

Proposal: Referenceability is the &root of all evil.

© Funkwerk Systems GmbH |

19

Taming immutable with librebindable

● Why doesn’t Unqual!T work? Why shouldn’t
Unqual!T work?

● Lots of code, even in Phobos, already assumes
that Unqual!T makes a head-mutable T.

● Structs can have immutable felds hidden inside,
creating isolated patches of immutability.

● Unqual already creates head-mutable values for
every type other than structs.

● Instead we should do this:
– felds are always actually head-mutable,

immutable(T) only sets the default for T var;

Actually viable proposal: Outright remove immutable struct fields.

immutable struct S
{
 // actually immutable(int)[] a
 // but can only be accessed
 // via immutable this
 int[] a;
}

© Funkwerk Systems GmbH |

20

Taming immutable with librebindable

● In efect, immutable struct makes each feld Unqual!(immutable T).
● But: direct feld access (T.field) on non-immutable T implconvs T to

immutable frst
– If this is impossible, just error.

● This preserves constness guarantees, preserves invariants, no
accessors needed

● But allows usage of any T in data structures via Unqual!T.
● Efect: Unqual!T == HeadMutable!T, always.
● Doesn’t fully solve the headmut problem for classes.

(immutable(Object) will never implconv to Object.)
– But we don’t use classes in domain code anyways. :-)
– Anyways, std.typecons.Rebindable exists.

Actually viable proposal: Outright remove immutable struct fields.

immutable struct S
{
 // actually immutable(int)[] a
 // but can only be accessed
 // via immutable this
 int[] a;
}

© Funkwerk Systems GmbH |

21

Taming immutable with librebindable

● Package is available at https://code.dlang.org/packages/rebindable
● Code is hosted on https://github.com/FeepingCreature/rebindable/
● Tested and working in production code.
● Thanks to my employer, Funkwerk, for letting me work on this!
● Questions?

But for now, librebindable will do.

https://code.dlang.org/packages/rebindable
https://github.com/FeepingCreature/rebindable/

	EINE GELUNGENE ÜBERSCHRIFT
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

