
15/10/2022, 20:42

Page 1 of 13http://127.0.0.1:3002/slide.html#1

None Some of this matters

Getting to know the hardware via D, and knowing when to care

Computers are important

Our jobs & tools

Do we need to understand them? Depends

Intuitively a little might be very helpful.

It's interesting

15/10/2022, 20:42

Page 2 of 13http://127.0.0.1:3002/slide.html#1

So how much

A couple of key takeaways are enough to get out of some tricky spots

For the experienced programmer this probably means performance

Could just be semantics for those less experienced with low-level code: Hardware
provides an API.

My emphasis is mainly on the former.

This talk is mostly things I didn't mention in DConf online

Processor language

Compile hello world

void main()

{

 import std.stdio;

 writeln("Hello World")

}

The compiler uses something (magic) to turn the code into something we can run

We run the something

The CPU gets pointed some data, the computer prints the text. How?

15/10/2022, 20:42

Page 3 of 13http://127.0.0.1:3002/slide.html#1

The processor has a language to tell it what to do

The statements in this language are called instructions

The CPU (obviously) sees this as bits and bytes e.g.

0F 01 F9

For humans we can represent them textually. Above instruction becomes

rdtscp

All of the instructions combined form an instruction set - ISA: Instruction set
architecture.

It's an API: Roy's talk, and see also "Is floating-point broken" on stack overflow

Pareto-ish

Most modern processors speak a broadly similar language.

Need to be able to branch, do arithmetic, do memory loads and stores.

That's a handful of instructions, for reasons beyond this slide in reality the ISA might
have a 50 to ~200 (apparently 1000 for x86, hard to count)

15/10/2022, 20:42

Page 4 of 13http://127.0.0.1:3002/slide.html#1

What's for sale

Desktop and servers: X86

Mobile and embedded, now finally the above categories too: Arm

The new-ish player: RISC-V

WASM?

Your favourite instruction might be missing

Cheap(er) processors might not have an instruction you want.

RISC-V processors may not have an integer divide (especially microcontrollers) for
example.

DEC Alpha had no integer divide

On desktops the missing instruction is probably some SIMD instruciton or other
acceleration

Worth keeping in mind.

15/10/2022, 20:42

Page 5 of 13http://127.0.0.1:3002/slide.html#1

The space has got simpler

"Clever" architectures have mostly been killed off for various reasons

Intel tried multiple times to be clever (iAPX 432, Itanium)

iAPX 432 - really interesting (object-oriented, garbage collection in hardware),
apparently a flop (before my time)

Itanium, died last year. Very different in ways beyond this talk.

We had a good team on paper. Unfortunately, the game was played on grass.
(Brian Clough)

"Worse is better"? Wrong question

A hidden assumption throughout this talk: Virtual memory with flat address spaces.
Lots of now-dead processors and mainframes did avoid that.

Ripples in the sand - patterns in typical code.

These patterns are a bound on how much performance we can get for free, estimates
of what that bound is vary a lot.

Not much code in between different pieces of control flow (a handful of instructions)

We spend lots of time in loops. Especially "classical" programs like signal processing
and things like that

Memory: The instructions are in memory, we jump to memory, we read memory, we
write to memory.

15/10/2022, 20:42

Page 6 of 13http://127.0.0.1:3002/slide.html#1

Again for emphasis: It's the memory stupid

"It's the memory stupid" is a famous article by Richard Sites from '96

Across the industry, today’s chips are largely
able to execute code faster than we can feed
them with instructions and data

Emphasis on "today" - today is even worse.

Takeaway? Memory performance is performance unless you can prove otherwise.

Peeking ahead: Memory latency curves

Graph of memory latency versus size of working set (~memory currently in play)

https://chipsandcheese.com/memory-latency-test/ run in your browser

very clear regions where we want to be.

the worst levels of memory latency are truly terrible.

hint that there are multiple layers of cache.

15/10/2022, 20:42

Page 7 of 13http://127.0.0.1:3002/slide.html#1

Ideal caches

To keep our ideal CPU fed with instructions and data we'd like

Infinite capacity

Infinite bandwidth

No latency

Persistence

Low cost

Some of these are obviously incompatible (we still have memory and disk storage
rather one of the two)

We can get surprisingly close: Approx 3 to 20 cycles up to 12MB on my laptop (single
thread)

Ideal caches are a route to defining certain types of misses

Caching side effects

Mainly for fun but we can derive good praxis from them

If you fall asleep now just remember: locality.

Demonstrate what can be demonstrated although CPU's are explicitly trying to avoid
these having any measurable affect on simple cases.

15/10/2022, 20:42

Page 8 of 13http://127.0.0.1:3002/slide.html#1

If we mutate across a large array in different strides a pattern emerges

The time per access varies signficantly with the stride

We hit a stride, time per access suddenly increases a lot because we are now (it turns
out) hitting more than one cache line per access.

Saw this earlier.

Very clear jumps in the cost of hitting memory when the amount of memory
(handwaving) on the go exceed a given level.

Some bumps and wiggles in the graph are due to implementation of virtual memory
apparently.

The levels have their own sub-details e.g. sharing between cores.

15/10/2022, 20:42

Page 9 of 13http://127.0.0.1:3002/slide.html#1

Prefetching

CPU is constantly looking for patterns in the instructions.

If it thinks it has a pattern, it'll start fetching things into the cache early.

core.simd has prefetch .

Virtual Memory

Every memory access in our code has to be translated into a physical address. The OS
sets out where the address will map to.

More precisely: Pages, page tables. Details are for a different talk.

This gets expensive.

15/10/2022, 20:42

Page 10 of 13http://127.0.0.1:3002/slide.html#1

Old time rock and roll - Page sizes

Pages are still 4 KiB by default.

Covering the address space of a modern phone is millions of pages

Hugepages are a thing (usually automatic, but worth knowing about since you can ask
for them)

Caching this

Having the CPU constantly chasing walking page tables is really expensive.

Cache the mappings in a TLB: Translation lookaside buffer

First ever modern cache in a computer was motivated by this (Atlas 2, I think)

15/10/2022, 20:42

Page 11 of 13http://127.0.0.1:3002/slide.html#1

The textbook cache-aware transformation - AOS ->
SOA

struct S {

 double x;

 double y;

 Chimpan z;

}

If we are going to access each one in their own burst of accesses, transform to

struct A {

 double[] z;

 double[] y;

 Chimpan[] z;

}

This can be extremely profitable because we can now write to 100% of each cache line at a
time.

Concept can be applied much more generally, lay out memory how it's going to be
accessed - can be applied to many domains (tiling images etc.)Outline of a modern superscalar processor

As with almost everything else, CPU's have a frontend and a backend.

Physical register file is much bigger than the architectural registers

Restricted dataflow. Surprisingly unimportant relative to memory.

15/10/2022, 20:42

Page 12 of 13http://127.0.0.1:3002/slide.html#1

The spice must flow - branch prediction

Average length of a basic block is very small relative to overall code

Those execution pipes need to be kept busy - the CPU speculatively does work based
on educated guesswork.

Actually it speculates everything until it sees things that it can't (not much)

Conditional branches are fairly easy to predict.

Static branch prediction gets you ~75% accuracy due to patterns in code.

Static branch prediction isn't really a thing anymore, don't reorder code based on
pipelines that only exist in someones head.

Top end dynamic branch prediction is getting very close to 100% on numerical
programs

AMD use something which is a littttle bit like a neural network.

Predicting indirection

interfaces, function pointers etc.

interface I {

 void foo();

}

CPU has buffers to predict from history where things might jump to (BTBs, more than
one of them)

These are much harder to deal with so you can make gains by (again) improving
locality.

15/10/2022, 20:42

Page 13 of 13http://127.0.0.1:3002/slide.html#1

Oops - spectre, meltdown

Memory is everything.

CPU is speculating -> Speculative memory accesses.

Interaction of this and caches lead to ability to extract information from code that
never "runs".

Meltdown was a result of Intel forgetting/choosing to check page table. Oops^2

Interesting stuff happening again

AI workloads are breeding new computer designs, new processors entirely (TPU), new
instructions

AVX-VNNI, apple extensions: all available from D

I didn't mention GPUs :(DCompute

