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Introduction

● PhD research: compilers, optimizing dynamic 
languages, type analysis, JIT compilation

● Higgs: experimental optimizing JIT for JS
● The core of Higgs is written in D
● This talk will be about

● Dynamic language optimization
● Higgs, JIT compilation, my research
● Experience implementing a JIT in D
● A JIT for D's CTFE
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Dynamic Languages

● Dynamic typing
● Types associated with values
● Variables can change type over time
● No type annotations

● Late binding
● Symbols resolved dynamically (e.g.: globals)

● Dynamic loading of code (eval, load)
● Dynamic growth of objects

● Objects as dictionaries



 4

Why so Slow?

● Reputation for being slow
● Easiest to implement in an interpreter
● Naive implementations have big overhead

● Values are usually “boxed”
● Values as pairs: datum + type tag
● Values as objects: CPython's numbers

● Basic operators (+, -, *, ...) have dynamic dispatch
● Global and field accesses as hash table lookups
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Making it Fast

● Make the code more static
● Remove dynamic behavior where possible

● Requires type information
● Profiling
● Type analysis

● Prove that specific variables have a given type
● e.g.: x is always an integer
● e.g.: the function foo will never be redefined
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Harder than it seems

● JS, Python, Ruby not designed with 
performance in mind
● Python: (re)write critical parts in C

● Dynamic code loading, eval
● Can break your assumptions

● Numerical towers, overflow checks
● Hard to prove overflows won't happen
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Higgs

● Two main components:
● Interpreter
● JIT compiler

● Moderate complexity:
● D: ~23 KLOC
● JS: ~11 KLOC
● Python: ~2 KLOC

● JS support:
● ~ES5, no property attributes, no with
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Building Higgs

● Lexer and parser written from scratch, in D
● Designed IR, began implementing AST->IR
● Began implementing basic interpreter
● Grew interpreter, runtime to cover more JS
● Built an x86 assembler, in D
● Implemented basic JIT compiler
● Currently:

● Implementing research ideas into JIT
● Icing on the cake: FFI, library support

● Added new unit tests at every step
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The Interpreter

● Interpreter is used:
● For profiling
● Fallback for unimplemented JIT features
● To start executing code faster

● Designed to be:
● Simple, easy to maintain
● Quick to extend and experiment with
● "JIT-friendly"

● Interpreter is quite slow, 1000 cycles/instr
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JIT-Friendly

● Register based VM, not stack-based
● Easier to analyze/optimize

● IR based on a control-flow graph, not AST
● Closer to machine code
● Easier to reason about

● Interpreter stack is an array of values/words
● Directly reused by the JIT

● Not recursive
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fib(n)

If (n < 2) goto BASE else REC

ENTRY:

if (n < 2) goto BASE else REC

ENTRY:

If (n < 2) goto BASE else REC

ENTRY:

return n

BASE:

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t2 = n - 2

CONT1:

t3 = call fib(t2), return to CONT2

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t4 = t1 + t3

CONT2:

return t4
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Low-level Instructions

● Higgs interprets a low-level IR
● Simplifies the interpreter

● Deals with simple, low-level ops
– e.g.: imul, fmul, load, store, call, ret

● Knows little about JS semantics

● Simplifies the JIT
● Less duplicated functionality in interpreter and JIT
● Avoids implicit dynamic dispatch in IR ops

– e.g.: the + operator in JS has lots of implicit branches!
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Self-hosting

● Runtime and standard library are self-hosted
● JS primitives (e.g.: JS add operator) are implemented 

in an extended dialect of JS
● Exposes low-level operations

● Primitives are compiled/inlined/optimized like any 
other JS code
● Avoids opaque calls into C or D code

● Easy to extend/change runtime
● Higher compilation times
● Inlining is critical
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// JS less-than operator (x < y)
function $rt_lt(x, y)
{
    // If x is integer
    if ($ir_is_int32(x))
    {
        if ($ir_is_int32(y))
            return $ir_lt_i32(x, y);

        if ($ir_is_float(y))
            return $ir_lt_f64($ir_i32_to_f64(x), y);
    }

    // If x is float
    if ($ir_is_float(x))
    {
        if ($ir_is_int32(y))
            return $ir_lt_f64(x, $ir_i32_to_f64(y));

        if ($ir_is_float(y))
            return $ir_lt_f64(x, y);
    }

    …
}
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The Higgs Heap

● Higgs manages its own heap for JS objects
● GC is copying, semi-space, stop-the-world

● Extremely simple
● Allocation by incrementing a pointer

● References to D objects must be maintained
● i.e.: Function IR/AST

● Interpreter manipulates references to JS heap
● Higgs GC might invalidate these
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The JIT Compiler

● Targets x86-64 only, for simplicity
● Kicks in once functions have been found hot 

enough (worth compiling)
● Execution counters on basic blocks

● Currently fairly basic
● No inlining, bulk of code is function calls

● Speedups of 5 to 20x
● Expected to soon reach 100x+ speedups
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Current Research

● Context-driven basic block versioning
● Similar idea to procedure cloning

● Specializing based on:
● Low-level type information
● Register allocation state
● Accumulated facts

● Integrating this in the JIT
● Similarities with trace compilation
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LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) { 
    x = f1(x,y,z); 
    y = f2(x,y,z); 
    z = f3(x,y,z);
}

LOOP_EXIT

i < k

x = f1(x,y,z); 
y = f2(x,y,z); 
z = f3(x,y,z);

++i
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LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) { 
    x = f1(x,y,z); 
    y = f2(x,y,z); 
    z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
i: R9

LOOP_EXIT
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LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) { 
    x = f1(x,y,z); 
    y = f2(x,y,z); 
    z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
i: R9

x: RBX
y: R11
z: stack slot 12
i: R9

LOOP_EXIT
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LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) { 
    x = f1(x,y,z); 
    y = f2(x,y,z); 
    z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
i: R9

x: RBX
y: R11
z: stack slot 12
i: R9

mov RAX, RBX
mov RCX, R11
mov RSI, [RSP + 12 * 8]
mov [RSP + 10 * 8], RSI

LOOP_EXIT
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LOOP_BODY

LOOP_TEST

LOOP_INCR

x: RAX
y: RCX
z: stack slot 10
i: R9

x: RBX
y: R11
z: stack slot 12
i: R9

LOOP_EXIT

LOOP_BODY

LOOP_TEST

LOOP_INCR

LOOP_BODY

LOOP_TEST

LOOP_INCR

LOOP_BODY_V2

LOOP_TEST_V2

LOOP_INCR_V2
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Advantages

● Automatically do loop peeling (when useful)
● Automatically do tail duplication
● Register allocation

● Fewer move operations
● Make simpler allocators more efficient

● Similar to trace compilation
● Accumulate knowledge
● Specialize based on types, constants
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A “Multi-world” View

● Traditional control-flow analysis
● Compute a fixed-point (LFP or GFP)
● At each basic block, solution must agree
● Pessimistic answer agrees with all inputs

● Block versioning
● Multiple solutions possible for a block
● Don't necessarily have to sacrifice
● Shifting fixed point to versioning of blocks
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Research Questions

● How much code blowup can we expect?
● Will we have to limit block versioning?
● What can we do to reduce code blowup?

● What performance gains can we expect?
● What kind of info should we version with?

● Constant propagation
● Granularity of type info used
● How much is too much?

● What is the effect on compilation time?
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Why did you choose D?
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JIT Compilers

● Need access to low-level operations
● Manual memory management
● Raw memory access
● System libraries

● Are very complex pieces of software
● Pipeline of code transformations
● Several interacting components

● Want to mitigate complexity
● Expressive language
● Garbage collection
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I like C++, but...

● C++ is very verbose
● Header files are frustrating

● Redundant declarations
● Poor organization of code
● Annoying constraints

● C macros are messy and weak
● C++ templates still feel limited
● No standard GC implementation
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Other Options

● Google's Go
● No templates/generics
● No pointer arithmetic (without casting)
● Very minimalist and very opinionated

● Mozilla's Rust
● Very young, still in flux
● Not an option when I started
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D to the rescue!

● Garbage collection by default
● But manual memory management is still possible

● Has been around for over a decade
● More mature than newer systems languages

● Attractive collection of features
● mixins, CTFE, templates, closures
● Freedom to choose

● Community is active, responsive
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Learning D

● If you know C++, you can write D code
● Similar enough, easy adaptation
● Slightly less verbose
● It's actually easier

● Most of the adaptation is learning new idioms
● Better/simpler ways of doing certain things

● Felt fairly intuitive
● (to a C++ programmer)



 35

Nifty Little Features

● D has many nifty features that make the 
language pleasant to use

● Not revolutionary, but common sense
● Many small features were a pleasant surprise
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foreach
foreach (value; iterable)

doSomething(value);

foreach (key, value; iterable)
doSomething(key, value);

foreach (regNo, localIdx; gpRegMap)
{
    if (localIdx is NULL_LOCAL)
        continue;

    spillReg(as, regNo);
}
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in and !in
key in map

(key in map) == false

key !in map

// Collect the dead functions
foreach (ptr, fun; interp.funRefs)
    if (ptr !in interp.liveFuns)
        collectFun(interp, fun);
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Type Inference

auto interp = new Interp();

auto getExportAddr(string name)
{
    assert (
        name in this.exports,
        "invalid exported label"
    );

    return getAddress(this.exports[name]);
}
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Delegates

// mov
test(
    delegate void (Assembler a) { a.instr(MOV, EAX, 7); }, 
    "B807000000"
);
test(
    delegate void (Assembler a) { a.instr(MOV, EAX, EBX); }, 
    "89D8"
);
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Type Ranges
size_t immSize() const
{
    // Compute the smallest size this immediate fits in
    if (imm >= int8_t.min && imm <= int8_t.max)
        return 8;
    if (imm >= int16_t.min && imm <= int16_t.max)
        return 16;
    if (imm >= int32_t.min && imm <= int32_t.max)
        return 32;

    return 64;
}
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The Garbage Collector

● Had to make the Higgs and D GCs work 
together
● Manual memory allocation
● Regions of memory not collected by D
● Maintain references to D heap alive

● Worked better than expected
● D GC behaves predictably
● Haven't had many bugs
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Templates + Mixins

extern (C) void ArithOp(Type typeTag, uint arity, string op)
(Interp interp, IRInstr instr)

alias ArithOp!(Type.INT32, 2, "auto r = x + y;") op_add_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x - y;") op_sub_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x * y;") op_mul_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x / y;") op_div_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x % y;") op_mod_i32;

alias ArithOp!(Type.INT32, 2, "auto r = x & y;") op_and_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x | y;") op_or_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x ^ y;") op_xor_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x << y;") op_lsft_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x >> y;") op_rsft_i32;
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The Build System

● Faster build times than other languages
● Much simpler than C/C++ makefiles:

● Pass source files to the compiler
● Things get compiled
● You are done

● Reduces need for complex build tools
● Higgs uses one short makefile
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The Community

● Centralized dlang.org website
● Forums, documentation, downloads

● Responsive, enthusiastic community
● Received answers to all my questions

● Most languages don't have a go-to place
● Many isolated resources
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Compile-Time Function Evaluation

● One of the reasons I chose D is CTFE
● Mixins: powerful macro system

● Allows creating domain-specific languages
● Arguably D's most powerful feature

● Unfortunately, ran into issues
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Declarative Object Layouts

● Want to control memory layout of our own 
objects precisely

● Access to objects from both D and JS
● Layouts described in declarative form
● D and JS code for getters/setters, allocation, 

initialization and GC traversal is auto-generated 
at compile-time

● Make domain-specific language using mixins
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mixin(
genLayouts([

    // String layout
    Layout(
        "str",
        null,
        [
            Field("len" , "uint32"),       // String length
            Field("hash", "uint32"),       // Hash code
            Field("data", "uint16", "len") // UTF-16 character data
        ]
    ),

    // String table layout (for hash consing)
    Layout(
        "strtbl",
        null,
        [
            Field("cap" , "uint32"),               // Capacity
            Field("num_strs" , "uint32", "", "0"), // Number of strings
            Field("str", "refptr", "cap", "null"), // Array of strings
        ]
    ),

    …
]));
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CTFE broke down

● Generating a few thousand lines of source code 
became very slow

● Memory leak using all available memory
● Computer locked up during compilation
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“This problem is well known [...] but it will take time to fix 
it well, possibly some months or more.”
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import std.string;
import std.array;
import std.conv;

string fun()
{
    auto app = appender!string();

    for (size_t i = 0; i < 10000; ++i)
        app.put("const int x ~" ~ to!string(i) ~ " = 0;");

    return app.data;
}

mixin(fun());
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Template Issues

● Needed template with list of integer arguments
● Known compiler bug
● Had to accept code duplication

mixin template MyTemplate(int[] arr) {}

Error: arithmetic/string type expected for value-
parameter, not int[]
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The assert that segfaults

● Tripped assert causes segfault when in a 
function indirectly called by generated code

● Tries to unwind the stack and fails
● assert meant to provide useful info if 

something goes wrong
● Should probably print an error before 

attempting to unwind the stack
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Interp.loop()

jit_entry_point()

main()

op_eval()

error() assert (foo, “something went wrong”);

catch (...) {…} // Catch uncaught exceptions
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Interp.loop()

jit_entry_point()

main()

op_eval()

error() assert (foo, “something went wrong”);

catch (...) {…} // Catch uncaught exceptions

One of these frames is not like the others,
one of these frames just doesn't belong!
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Unit Tests Blocks

● Don't support naming unit tests
● Failing tests not reported at the end
● The main function is still called normally

● Higgs starts a REPL by default

● No way to select which tests are run
● Tempted to write our own framework



 58

alias void function(CodeGenCtx ctx, CodeGenState st, 
IRInstr instr) CodeGenFn;

CodeGenFn[Opcode*] codeGenFns;

/// Map opcodes to JIT code generation functions
static this()
{
    codeGenFns[&SET_TRUE]       = &gen_set_true;
    codeGenFns[&SET_FALSE]      = &gen_set_false;
    codeGenFns[&SET_UNDEF]      = &gen_set_undef;
    codeGenFns[&SET_MISSING]    = &gen_set_missing;
    codeGenFns[&SET_NULL]       = &gen_set_null;
    codeGenFns[&SET_INT32]      = &gen_set_int32;
    codeGenFns[&SET_STR]        = &gen_set_str;

    codeGenFns[&MOVE]           = &gen_move;

    codeGenFns[&IS_CONST]       = &gen_is_const;
    codeGenFns[&IS_REFPTR]      = &gen_is_refptr;
    codeGenFns[&IS_INT32]       = &gen_is_int32;
    codeGenFns[&IS_FLOAT]       = &gen_is_float;

...
}
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A JIT for D's CTFE?
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The Cost of JIT

● Mainstream VMs typically have a JIT with 
multiple optimization levels
● Or an interpreter and a JIT (e.g.: Firefox, Higgs)

● JIT compilation takes time, must pay for itself
● Not worth it for functions that only run a few times
● Only worthwhile for heavier computational loads

● Majority of code never gets optimized
● Doesn't run for very long, if at all
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Does CTFE need a JIT?

● What kinds of things are people doing with it?
● Typical scenario: source generation for mixin
● At most a few thousand string concatenations
● Probably don't need fast CTFE for this

● Be open minded: faster CTFE opens doors
● Generating procedural content at compile time
● “If you build it, they will come”
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A Simple Architecture

● Don't bother optimizing the interpreter
● Mozilla is planning to switch to an AST interpreter

● Start with a simple JIT
● e.g.: stack-based, no register allocation
● Will compile very fast
● Will be much faster than your interpreter

● Reuse some of the D compilation infrastructure?
● Compile the really hot code with DMD
● Reuse compiled code between CTFE runs
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AST
Interpreter

Simple JIT
(baseline)

DMD

1st call

500th call

5000th call

ASM

Optimized
ASM

SourceSource

SourceSource

≤ 10%

≤ 1%
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Other Considerations

● Precompile most library code used in CTFE
● Interpreter can call into compiled code
● i.e.: most string/array operations
● Some templates can be precompiled

● Re-optimizing mid-call complicates things
● Long-running functions
● Probably not a concern
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Suggestions
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Static Initialization of Maps

● Associative arrays are useful for declarative 
programming

● Can't currently statically initialize them in D
● Requires using static constructors

● Is possible in JS, dynamic languages
● Would be helpful if this feature was in D

● Still useful if limited to constant maps



 67

Integer Types

● D integer types have guaranteed sizes, but 
they're not obvious from the name

● Why not have int8, uint8, int32, uint32, etc. in 
default namespace, encourage their use?

● Make programmers more aware of the 
limitations/characteristics of the type they're 
using.
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Documentation Effort

● Expose people to more idiomatic code
● dlang.org, Documentation->Articles

● Few things in there
● Most not that useful for beginners

● Expand/promote tutorials
● Show people the cool things you can do with D
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Conclusion

● Overall positive experience using D
● Some hiccups, but no showstoppers

● Unexpected use cases

● People accuse C++ of being too complex
● D has all the features, feels like cohesive whole
● Re-engineered with hindsight

● More productive than writing C++
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github.com/maximecb/Higgs

maximechevalierb@gmail.com

pointersgonewild.wordpress.com

Love2Code on twitter
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