
Higgs, an Experimental JIT
Compiler written in D

DConf 2013

Maxime Chevalier-Boisvert

Université de Montréal

Introduction

● PhD research: compilers, optimizing dynamic
languages, type analysis, JIT compilation

● Higgs: experimental optimizing JIT for JS
● The core of Higgs is written in D
● This talk will be about

● Dynamic language optimization
● Higgs, JIT compilation, my research
● Experience implementing a JIT in D
● A JIT for D's CTFE

 3

Dynamic Languages

● Dynamic typing
● Types associated with values
● Variables can change type over time
● No type annotations

● Late binding
● Symbols resolved dynamically (e.g.: globals)

● Dynamic loading of code (eval, load)
● Dynamic growth of objects

● Objects as dictionaries

 4

Why so Slow?

● Reputation for being slow
● Easiest to implement in an interpreter
● Naive implementations have big overhead

● Values are usually “boxed”
● Values as pairs: datum + type tag
● Values as objects: CPython's numbers

● Basic operators (+, -, *, ...) have dynamic dispatch
● Global and field accesses as hash table lookups

 5

Making it Fast

● Make the code more static
● Remove dynamic behavior where possible

● Requires type information
● Profiling
● Type analysis

● Prove that specific variables have a given type
● e.g.: x is always an integer
● e.g.: the function foo will never be redefined

 6

Harder than it seems

● JS, Python, Ruby not designed with
performance in mind
● Python: (re)write critical parts in C

● Dynamic code loading, eval
● Can break your assumptions

● Numerical towers, overflow checks
● Hard to prove overflows won't happen

 7

Higgs

● Two main components:
● Interpreter
● JIT compiler

● Moderate complexity:
● D: ~23 KLOC
● JS: ~11 KLOC
● Python: ~2 KLOC

● JS support:
● ~ES5, no property attributes, no with

 8

Source

Lexer Parser

IR genInterpreter

JIT x86 ASMProfiling
Data

Runtime

Source

Stdlib

Tokens AST

IR CFG

 9

Building Higgs

● Lexer and parser written from scratch, in D
● Designed IR, began implementing AST->IR
● Began implementing basic interpreter
● Grew interpreter, runtime to cover more JS
● Built an x86 assembler, in D
● Implemented basic JIT compiler
● Currently:

● Implementing research ideas into JIT
● Icing on the cake: FFI, library support

● Added new unit tests at every step

 10

The Interpreter

● Interpreter is used:
● For profiling
● Fallback for unimplemented JIT features
● To start executing code faster

● Designed to be:
● Simple, easy to maintain
● Quick to extend and experiment with
● "JIT-friendly"

● Interpreter is quite slow, 1000 cycles/instr

 11

wsp ipalloc limit

IRInstr

tsp

IRInstr

IRInstr

IRInstr

Higgs Interpreter

Word/type stacks

Heap

Instructions

 12

JIT-Friendly

● Register based VM, not stack-based
● Easier to analyze/optimize

● IR based on a control-flow graph, not AST
● Closer to machine code
● Easier to reason about

● Interpreter stack is an array of values/words
● Directly reused by the JIT

● Not recursive

 13

fib(n)

If (n < 2) goto BASE else REC

ENTRY:

if (n < 2) goto BASE else REC

ENTRY:

If (n < 2) goto BASE else REC

ENTRY:

return n

BASE:

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t2 = n - 2

CONT1:

t3 = call fib(t2), return to CONT2

If (n < 2) goto BASE else REC

ENTRY:

t0 = n - 1

REC:

t1 = call fib(t0), return to CONT1

If (n < 2) goto BASE else REC

ENTRY:

t4 = t1 + t3

CONT2:

return t4

 14

Low-level Instructions

● Higgs interprets a low-level IR
● Simplifies the interpreter

● Deals with simple, low-level ops
– e.g.: imul, fmul, load, store, call, ret

● Knows little about JS semantics

● Simplifies the JIT
● Less duplicated functionality in interpreter and JIT
● Avoids implicit dynamic dispatch in IR ops

– e.g.: the + operator in JS has lots of implicit branches!

 15

Self-hosting

● Runtime and standard library are self-hosted
● JS primitives (e.g.: JS add operator) are implemented

in an extended dialect of JS
● Exposes low-level operations

● Primitives are compiled/inlined/optimized like any
other JS code
● Avoids opaque calls into C or D code

● Easy to extend/change runtime
● Higher compilation times
● Inlining is critical

 16

// JS less-than operator (x < y)
function $rt_lt(x, y)
{
 // If x is integer
 if ($ir_is_int32(x))
 {
 if ($ir_is_int32(y))
 return $ir_lt_i32(x, y);

 if ($ir_is_float(y))
 return $ir_lt_f64($ir_i32_to_f64(x), y);
 }

 // If x is float
 if ($ir_is_float(x))
 {
 if ($ir_is_int32(y))
 return $ir_lt_f64(x, $ir_i32_to_f64(y));

 if ($ir_is_float(y))
 return $ir_lt_f64(x, y);
 }

 …
}

 17

The Higgs Heap

● Higgs manages its own heap for JS objects
● GC is copying, semi-space, stop-the-world

● Extremely simple
● Allocation by incrementing a pointer

● References to D objects must be maintained
● i.e.: Function IR/AST

● Interpreter manipulates references to JS heap
● Higgs GC might invalidate these

 18

Interpreter

object closure

IRInstr

IRFunction

IRInstr IRInstr

D heap

Higgs heap

Live functions

 19

The JIT Compiler

● Targets x86-64 only, for simplicity
● Kicks in once functions have been found hot

enough (worth compiling)
● Execution counters on basic blocks

● Currently fairly basic
● No inlining, bulk of code is function calls

● Speedups of 5 to 20x
● Expected to soon reach 100x+ speedups

 20

Current Research

● Context-driven basic block versioning
● Similar idea to procedure cloning

● Specializing based on:
● Low-level type information
● Register allocation state
● Accumulated facts

● Integrating this in the JIT
● Similarities with trace compilation

 21

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

LOOP_EXIT

i < k

x = f1(x,y,z);
y = f2(x,y,z);
z = f3(x,y,z);

++i

 22

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
i: R9

LOOP_EXIT

 23

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
i: R9

x: RBX
y: R11
z: stack slot 12
i: R9

LOOP_EXIT

 24

LOOP_BODY

LOOP_TEST

LOOP_INCR

for (i = 0; i < k; ++i) {
 x = f1(x,y,z);
 y = f2(x,y,z);
 z = f3(x,y,z);
}

x: RAX
y: RCX
z: stack slot 10
i: R9

x: RBX
y: R11
z: stack slot 12
i: R9

mov RAX, RBX
mov RCX, R11
mov RSI, [RSP + 12 * 8]
mov [RSP + 10 * 8], RSI

LOOP_EXIT

 25

LOOP_BODY

LOOP_TEST

LOOP_INCR

x: RAX
y: RCX
z: stack slot 10
i: R9

x: RBX
y: R11
z: stack slot 12
i: R9

LOOP_EXIT

LOOP_BODY

LOOP_TEST

LOOP_INCR

LOOP_BODY

LOOP_TEST

LOOP_INCR

LOOP_BODY_V2

LOOP_TEST_V2

LOOP_INCR_V2

 26

Advantages

● Automatically do loop peeling (when useful)
● Automatically do tail duplication
● Register allocation

● Fewer move operations
● Make simpler allocators more efficient

● Similar to trace compilation
● Accumulate knowledge
● Specialize based on types, constants

 27

A “Multi-world” View

● Traditional control-flow analysis
● Compute a fixed-point (LFP or GFP)
● At each basic block, solution must agree
● Pessimistic answer agrees with all inputs

● Block versioning
● Multiple solutions possible for a block
● Don't necessarily have to sacrifice
● Shifting fixed point to versioning of blocks

 28

Research Questions

● How much code blowup can we expect?
● Will we have to limit block versioning?
● What can we do to reduce code blowup?

● What performance gains can we expect?
● What kind of info should we version with?

● Constant propagation
● Granularity of type info used
● How much is too much?

● What is the effect on compilation time?

 29

Why did you choose D?

 30

JIT Compilers

● Need access to low-level operations
● Manual memory management
● Raw memory access
● System libraries

● Are very complex pieces of software
● Pipeline of code transformations
● Several interacting components

● Want to mitigate complexity
● Expressive language
● Garbage collection

 31

I like C++, but...

● C++ is very verbose
● Header files are frustrating

● Redundant declarations
● Poor organization of code
● Annoying constraints

● C macros are messy and weak
● C++ templates still feel limited
● No standard GC implementation

 32

Other Options

● Google's Go
● No templates/generics
● No pointer arithmetic (without casting)
● Very minimalist and very opinionated

● Mozilla's Rust
● Very young, still in flux
● Not an option when I started

 33

D to the rescue!

● Garbage collection by default
● But manual memory management is still possible

● Has been around for over a decade
● More mature than newer systems languages

● Attractive collection of features
● mixins, CTFE, templates, closures
● Freedom to choose

● Community is active, responsive

 34

Learning D

● If you know C++, you can write D code
● Similar enough, easy adaptation
● Slightly less verbose
● It's actually easier

● Most of the adaptation is learning new idioms
● Better/simpler ways of doing certain things

● Felt fairly intuitive
● (to a C++ programmer)

 35

Nifty Little Features

● D has many nifty features that make the
language pleasant to use

● Not revolutionary, but common sense
● Many small features were a pleasant surprise

 36

foreach
foreach (value; iterable)

doSomething(value);

foreach (key, value; iterable)
doSomething(key, value);

foreach (regNo, localIdx; gpRegMap)
{
 if (localIdx is NULL_LOCAL)
 continue;

 spillReg(as, regNo);
}

 37

in and !in
key in map

(key in map) == false

key !in map

// Collect the dead functions
foreach (ptr, fun; interp.funRefs)
 if (ptr !in interp.liveFuns)
 collectFun(interp, fun);

 38

Type Inference

auto interp = new Interp();

auto getExportAddr(string name)
{
 assert (
 name in this.exports,
 "invalid exported label"
);

 return getAddress(this.exports[name]);
}

 39

Delegates

// mov
test(
 delegate void (Assembler a) { a.instr(MOV, EAX, 7); },
 "B807000000"
);
test(
 delegate void (Assembler a) { a.instr(MOV, EAX, EBX); },
 "89D8"
);

 40

Type Ranges
size_t immSize() const
{
 // Compute the smallest size this immediate fits in
 if (imm >= int8_t.min && imm <= int8_t.max)
 return 8;
 if (imm >= int16_t.min && imm <= int16_t.max)
 return 16;
 if (imm >= int32_t.min && imm <= int32_t.max)
 return 32;

 return 64;
}

 41

The Garbage Collector

● Had to make the Higgs and D GCs work
together
● Manual memory allocation
● Regions of memory not collected by D
● Maintain references to D heap alive

● Worked better than expected
● D GC behaves predictably
● Haven't had many bugs

 42

Templates + Mixins

extern (C) void ArithOp(Type typeTag, uint arity, string op)
(Interp interp, IRInstr instr)

alias ArithOp!(Type.INT32, 2, "auto r = x + y;") op_add_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x - y;") op_sub_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x * y;") op_mul_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x / y;") op_div_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x % y;") op_mod_i32;

alias ArithOp!(Type.INT32, 2, "auto r = x & y;") op_and_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x | y;") op_or_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x ^ y;") op_xor_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x << y;") op_lsft_i32;
alias ArithOp!(Type.INT32, 2, "auto r = x >> y;") op_rsft_i32;

 43

The Build System

● Faster build times than other languages
● Much simpler than C/C++ makefiles:

● Pass source files to the compiler
● Things get compiled
● You are done

● Reduces need for complex build tools
● Higgs uses one short makefile

 44

The Community

● Centralized dlang.org website
● Forums, documentation, downloads

● Responsive, enthusiastic community
● Received answers to all my questions

● Most languages don't have a go-to place
● Many isolated resources

 45

Compile-Time Function Evaluation

● One of the reasons I chose D is CTFE
● Mixins: powerful macro system

● Allows creating domain-specific languages
● Arguably D's most powerful feature

● Unfortunately, ran into issues

 46

Declarative Object Layouts

● Want to control memory layout of our own
objects precisely

● Access to objects from both D and JS
● Layouts described in declarative form
● D and JS code for getters/setters, allocation,

initialization and GC traversal is auto-generated
at compile-time

● Make domain-specific language using mixins

 47

mixin(
genLayouts([

 // String layout
 Layout(
 "str",
 null,
 [
 Field("len" , "uint32"), // String length
 Field("hash", "uint32"), // Hash code
 Field("data", "uint16", "len") // UTF-16 character data
]
),

 // String table layout (for hash consing)
 Layout(
 "strtbl",
 null,
 [
 Field("cap" , "uint32"), // Capacity
 Field("num_strs" , "uint32", "", "0"), // Number of strings
 Field("str", "refptr", "cap", "null"), // Array of strings
]
),

 …
]));

 48

CTFE broke down

● Generating a few thousand lines of source code
became very slow

● Memory leak using all available memory
● Computer locked up during compilation

 49

“This problem is well known [...] but it will take time to fix
it well, possibly some months or more.”

 50

 51

import std.string;
import std.array;
import std.conv;

string fun()
{
 auto app = appender!string();

 for (size_t i = 0; i < 10000; ++i)
 app.put("const int x ~" ~ to!string(i) ~ " = 0;");

 return app.data;
}

mixin(fun());

 52

 53

Template Issues

● Needed template with list of integer arguments
● Known compiler bug
● Had to accept code duplication

mixin template MyTemplate(int[] arr) {}

Error: arithmetic/string type expected for value-
parameter, not int[]

 54

The assert that segfaults

● Tripped assert causes segfault when in a
function indirectly called by generated code

● Tries to unwind the stack and fails
● assert meant to provide useful info if

something goes wrong
● Should probably print an error before

attempting to unwind the stack

 55

Interp.loop()

jit_entry_point()

main()

op_eval()

error() assert (foo, “something went wrong”);

catch (...) {…} // Catch uncaught exceptions

 56

Interp.loop()

jit_entry_point()

main()

op_eval()

error() assert (foo, “something went wrong”);

catch (...) {…} // Catch uncaught exceptions

One of these frames is not like the others,
one of these frames just doesn't belong!

 57

Unit Tests Blocks

● Don't support naming unit tests
● Failing tests not reported at the end
● The main function is still called normally

● Higgs starts a REPL by default

● No way to select which tests are run
● Tempted to write our own framework

 58

alias void function(CodeGenCtx ctx, CodeGenState st,
IRInstr instr) CodeGenFn;

CodeGenFn[Opcode*] codeGenFns;

/// Map opcodes to JIT code generation functions
static this()
{
 codeGenFns[&SET_TRUE] = &gen_set_true;
 codeGenFns[&SET_FALSE] = &gen_set_false;
 codeGenFns[&SET_UNDEF] = &gen_set_undef;
 codeGenFns[&SET_MISSING] = &gen_set_missing;
 codeGenFns[&SET_NULL] = &gen_set_null;
 codeGenFns[&SET_INT32] = &gen_set_int32;
 codeGenFns[&SET_STR] = &gen_set_str;

 codeGenFns[&MOVE] = &gen_move;

 codeGenFns[&IS_CONST] = &gen_is_const;
 codeGenFns[&IS_REFPTR] = &gen_is_refptr;
 codeGenFns[&IS_INT32] = &gen_is_int32;
 codeGenFns[&IS_FLOAT] = &gen_is_float;

...
}

 59

A JIT for D's CTFE?

 60

The Cost of JIT

● Mainstream VMs typically have a JIT with
multiple optimization levels
● Or an interpreter and a JIT (e.g.: Firefox, Higgs)

● JIT compilation takes time, must pay for itself
● Not worth it for functions that only run a few times
● Only worthwhile for heavier computational loads

● Majority of code never gets optimized
● Doesn't run for very long, if at all

 61

Does CTFE need a JIT?

● What kinds of things are people doing with it?
● Typical scenario: source generation for mixin
● At most a few thousand string concatenations
● Probably don't need fast CTFE for this

● Be open minded: faster CTFE opens doors
● Generating procedural content at compile time
● “If you build it, they will come”

 62

A Simple Architecture

● Don't bother optimizing the interpreter
● Mozilla is planning to switch to an AST interpreter

● Start with a simple JIT
● e.g.: stack-based, no register allocation
● Will compile very fast
● Will be much faster than your interpreter

● Reuse some of the D compilation infrastructure?
● Compile the really hot code with DMD
● Reuse compiled code between CTFE runs

 63

AST
Interpreter

Simple JIT
(baseline)

DMD

1st call

500th call

5000th call

ASM

Optimized
ASM

SourceSource

SourceSource

≤ 10%

≤ 1%

 64

Other Considerations

● Precompile most library code used in CTFE
● Interpreter can call into compiled code
● i.e.: most string/array operations
● Some templates can be precompiled

● Re-optimizing mid-call complicates things
● Long-running functions
● Probably not a concern

 65

Suggestions

 66

Static Initialization of Maps

● Associative arrays are useful for declarative
programming

● Can't currently statically initialize them in D
● Requires using static constructors

● Is possible in JS, dynamic languages
● Would be helpful if this feature was in D

● Still useful if limited to constant maps

 67

Integer Types

● D integer types have guaranteed sizes, but
they're not obvious from the name

● Why not have int8, uint8, int32, uint32, etc. in
default namespace, encourage their use?

● Make programmers more aware of the
limitations/characteristics of the type they're
using.

 68

Documentation Effort

● Expose people to more idiomatic code
● dlang.org, Documentation->Articles

● Few things in there
● Most not that useful for beginners

● Expand/promote tutorials
● Show people the cool things you can do with D

 69

Conclusion

● Overall positive experience using D
● Some hiccups, but no showstoppers

● Unexpected use cases

● People accuse C++ of being too complex
● D has all the features, feels like cohesive whole
● Re-engineered with hindsight

● More productive than writing C++

 70

github.com/maximecb/Higgs

maximechevalierb@gmail.com

pointersgonewild.wordpress.com

Love2Code on twitter

 71

Special Thanks To

● Thesis advisors: Bruno Dufour, Marc Feeley
● Contributors: Tom Brasington, John Colvin
● Supporters: Erinn
● The Mozilla Foundation
● Andrei Alexandrescu and Walter Bright
● The flying spaghetti monster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

