seciomantic

MAY 2013

METAPROGRAMMING IN THE REAL WORLD

DON CLUGSTON




seciomantic
FROM RESEARCH MODE TO PRODUCTION

@ My experience with Solar Photovotaics



seciomantic
FROM RESEARCH MODE TO PRODUCTION

@ My experience with Solar Photovotaics
- 1995 : Spacecraft and Hippies



seciomantic
FROM RESEARCH MODE TO PRODUCTION

@ My experience with Solar Photovotaics
- 1995 : Spacecraft and Hippies
- 2007 : NYSE, SBillion



s@ciomantic

FROM RESEARCH MODE TO PRODUCTION

@ My experience with Solar Photovotaics
- 1995 : Spacecraft and Hippies
- 2007 : NYSE, SBillion
- 2011 : Commodity market



s@ciomantic

FROM RESEARCH MODE TO PRODUCTION

@ My experience with Solar Photovotaics
- 1995 : Spacecraft and Hippies
- 2007 : NYSE, SBillion
- 2011 : Commodity market

@ Early adopters show where your guesses were wrong!



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs

@ Real-time bidding for online advertising



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D

«@ Expanding globally



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D

«@ Expanding globally

- Serving 50+ markets on 6 continents



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D

«@ Expanding globally
- Serving 50+ markets on 6 continents
- Offices in 9 countries



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D

«@ Expanding globally
- Serving 50+ markets on 6 continents
- Offices in 9 countries
- 100+ employees, 25+ nationalities



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D

«@ Expanding globally
- Serving 50+ markets on 6 continents
- Offices in 9 countries
- 100+ employees, 25+ nationalities

«@ Profitable



s@ciomantic

SOCIOMANTIC LABS GMBH

@ Founded 2009, Berlin by 3 PhDs
@ Real-time bidding for online advertising

@ Technology based
- Core technology is 100% D

«@ Expanding globally
- Serving 50+ markets on 6 continents
- Offices in 9 countries
- 100+ employees, 25+ nationalities

«@ Profitable

- Growth based entirely on revenue



seciomantic
REAL-TIME BIDDING

@ User visits web page



seciomantic
REAL-TIME BIDDING

@ User visits web page

@ While it loads, website auctions an ad space



seciomantic
REAL-TIME BIDDING

@ User visits web page
@ While it loads, website auctions an ad space

@ We bid on behalf of our advertisers



seciomantic
REAL-TIME BIDDING

@ User visits web page
@ While it loads, website auctions an ad space
@ We bid on behalf of our advertisers

@ Highest bidder gets to show their ad in the space



seciomantic
REAL-TIME BIDDING

@ User visits web page

@ While it loads, website auctions an ad space

@ We bid on behalf of our advertisers

@ Highest bidder gets to show their ad in the space

@ Bids must be placed within 50 milliseconds



seciomantic
REAL-TIME BIDDING

@ User visits web page

@ While it loads, website auctions an ad space

@ We bid on behalf of our advertisers

@ Highest bidder gets to show their ad in the space

@ Bids must be placed within 50 milliseconds
- Including internet latency



seciomantic
REAL-TIME BIDDING

@ User visits web page

@ While it loads, website auctions an ad space

@ We bid on behalf of our advertisers

@ Highest bidder gets to show their ad in the space

@ Bids must be placed within 50 milliseconds
- Including internet latency

@ Billions of auctions per day



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data
- Terabytes/day



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data
- Terabytes/day

@ Relational databases too slow + don’t scale



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data
- Terabytes/day

@ Relational databases too slow + don’t scale

@ Everyone else uses an off-the shelf NoSQL product



s@ciomantic

BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data
- Terabytes/day

@ Relational databases too slow + don’t scale

@ Everyone else uses an off-the shelf NoSQL product
- and works around the speed bottlenecks



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data
- Terabytes/day

@ Relational databases too slow + don’t scale

@ Everyone else uses an off-the shelf NoSQL product
- and works around the speed bottlenecks

@ But we created an intrinsically fast solution, using D



seciomantic
BIG DATA

@ Must calculate how much this ad space is worth

@ Bid accuracy improves with more data
- Terabytes/day

@ Relational databases too slow + don’t scale

@ Everyone else uses an off-the shelf NoSQL product
- and works around the speed bottlenecks

@ But we created an intrinsically fast solution, using D

@ 50 milliseconds (minus net latency) to place a bid



s@ciomantic

BIG DATA

Must calculate how much this ad space is worth

Bid accuracy improves with more data
- Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
- and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

50 milliseconds (minus net latency) to place a bid

- Typical hard disk seek time is 9 ms



s@ciomantic

Must calculate how much this ad space is worth

Bid accuracy improves with more data
- Terabytes/day

Relational databases too slow + don’t scale

Everyone else uses an off-the shelf NoSQL product
- and works around the speed bottlenecks

But we created an intrinsically fast solution, using D

50 milliseconds (minus net latency) to place a bid
- Typical hard disk seek time is 9 ms

- For most bids we achieve <= 2 ms

BIG DATA



s@ciomantic

OUR TECHNOLOGY STACK

@ Tango-based runtime (modified), own libraries



s@ciomantic

OUR TECHNOLOGY STACK

@ Tango-based runtime (modified), own libraries
- Avoid ALL heap activity



s@ciomantic

OUR TECHNOLOGY STACK

@ Tango-based runtime (modified), own libraries
- Avoid ALL heap activity

@ Fiber-based concurrency (not threads)



s@ciomantic

OUR TECHNOLOGY STACK

@ Tango-based runtime (modified), own libraries
- Avoid ALL heap activity

@ Fiber-based concurrency (not threads)

@ ‘Swarm’ In-memory Distributed Hash Table



s@ciomantic

OUR TECHNOLOGY STACK

@ Tango-based runtime (modified), own libraries
- Avoid ALL heap activity

@ Fiber-based concurrency (not threads)
@ ‘Swarm’ In-memory Distributed Hash Table

@ Data stored in D format, no conversion



s@ciomantic

OUR TECHNOLOGY STACK

@ Tango-based runtime (modified), own libraries
- Avoid ALL heap activity

@ Fiber-based concurrency (not threads)
@ ‘Swarm’ In-memory Distributed Hash Table
@ Data stored in D format, no conversion

@ All processes stream-based and completely scalable



seciomantic
WHY D?

@ Direct binding to C libraries



seciomantic
WHY D?

@ Direct binding to C libraries

@ Array slices



s@ciomantic

@ Direct binding to C libraries

@ Array slices
- Avoid heap activity, but stay correct



s@ciomantic

@ Direct binding to C libraries

@ Array slices
- Avoid heap activity, but stay correct

@ Painless compile-time programming



s@ciomantic

@ Direct binding to C libraries

@ Array slices
- Avoid heap activity, but stay correct

@ Painless compile-time programming
- eq, for serialization



s@ciomantic

D METAPROGRAMMING IN 2001

@ Features to drop from C++
- C source code compatibility
- Link compatibility with CG++
- Multiple inheritance
- Preprocessor
- Templates

-- Walter Bright, "D Spec Draft 17, (Aug 2001)



seciomantic
D METAPROGRAMMING IN 2005

@ Templates!



seciomantic
D METAPROGRAMMING IN 2005

@ Templates!

@ static if, static assert



seciomantic
D METAPROGRAMMING IN 2005

@ Templates!
@ static if, static assert

@ Some reflection -- is() expressions



seciomantic
D METAPROGRAMMING IN 2005

@ Templates!
@ static if, static assert
@ Some reflection -- is() expressions

@ Still defensive w.r.t C++



s@ciomantic

D METAPROGRAMMING IN 2005

@ Templates!
@ static if, static assert
@ Some reflection -- is() expressions

@ Still defensive w.rt C++
- "If a language can capture 90% of the power of C(++ with 10% of
its complexity, | argue that is a worthwhile tradeoff.” - DMD FAQ



seciomantic
D METAPROGRAMMING IN 2007

@ Improved constant folding



seciomantic
D METAPROGRAMMING IN 2007

@ Improved constant folding

«@ Compile Time Function Execution (CTFE)



seciomantic
D METAPROGRAMMING IN 2007

@ Improved constant folding
«@ Compile Time Function Execution (CTFE)

@ string mixins



seciomantic
D METAPROGRAMMING IN 2007

@ Improved constant folding
«@ Compile Time Function Execution (CTFE)
@ string mixins

@ stringof



seciomantic
D METAPROGRAMMING IN 2013

@ Template constraints



seciomantic
D METAPROGRAMMING IN 2013

@ Template constraints

@ _ _traits (just as ugly as is() expressions!)



seciomantic
D METAPROGRAMMING IN 2013

@ Template constraints
@ _ _traits (just as ugly as is() expressions!)

@ alias this



seciomantic
D METAPROGRAMMING IN 2013

@ Template constraints
@ _ _traits (just as ugly as is() expressions!)
@ alias this

@ opDispatch



seciomantic
D METAPROGRAMMING IN 2013

@ Template constraints

@ _ _traits (just as ugly as is() expressions!)
@ alias this

@ opDispatch

@ Dramatic implementation improvements



s@ciomantic

WHY THE HISTORY MATTERS

@ We got here by incremental improvements



s@ciomantic

WHY THE HISTORY MATTERS

@ We got here by incremental improvements

@ Programmers follow the same learning curve



s@ciomantic

WHY THE HISTORY MATTERS

@ We got here by incremental improvements
@ Programmers follow the same learning curve

@ Metaprogramming is an unexpected strength of D



s@ciomantic

WHY THE HISTORY MATTERS

@ We got here by incremental improvements
@ Programmers follow the same learning curve
@ Metaprogramming is an unexpected strength of D

@ We still have some detritus



s@ciomantic

RETURN ON INVESTMENT (ROI)

@ (Benefit - Cost) / Cost



s@ciomantic

RETURN ON INVESTMENT (ROI)

@ (Benefit - Cost) / Cost

@ At what time does this become positive?



s@ciomantic

RETURN ON INVESTMENT (ROI)

@ (Benefit - Cost) / Cost
@ At what time does this become positive?

@ The time until you obtain benefit can be as important
as the cost!



s@ciomantic

RETURN ON INVESTMENT (ROI)

@ (Benefit - Cost) / Cost
@ At what time does this become positive?

@ The time until you obtain benefit can be as important
as the cost!

«@ Benefit > Cost at t = infinity is not enough!



s@ciomantic

RETURN ON INVESTMENT (ROI)

@ (Benefit - Cost) / Cost
@ At what time does this become positive?

@ The time until you obtain benefit can be as important
as the cost!

«@ Benefit > Cost at t = infinity is not enough!

@ Who gets the benefit?



s@ciomantic

BACKWARDS COMPATIBILITY - EXPECTATION

@ Language changes must NEVER break code



s@ciomantic

BACKWARDS COMPATIBILITY - EXPECTATION

@ Language changes must NEVER break code

@ Except in extreme cases



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost

@ But keeping mis-features is worsel



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost

@ But keeping mis-features is worsel
- an on-going cost



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost

@ But keeping mis-features is worsel
- an on-going cost

@ Gratuitous name changes have very poor ROI



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost

@ But keeping mis-features is worsel
- an on-going cost

@ Gratuitous name changes have very poor ROI

@ If the benefit is instant, any cost is OK



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost

@ But keeping mis-features is worsel
- an on-going cost

@ Gratuitous name changes have very poor ROI

@ If the benefit is instant, any cost is OK
- eq if it catches a bug



s@ciomantic

BACKWARDS COMPATIBILITY - EXPERIENCE

@ Breaking code is an up-front cost

@ But keeping mis-features is worsel
- an on-going cost

@ Gratuitous name changes have very poor ROI

@ If the benefit is instant, any cost is OK
- eq if it catches a bug

@ Breaking changes can be met with enthusiasm!



seciomantic
METAPROGRAMMING

@ Expectation



seciomantic
METAPROGRAMMING

@ Expectation
- Easier than in G++



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience
- Used even in in application codel



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience
- Used even in in application codel
- Used even by new D programmers!



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience
- Used even in in application codel
- Used even by new D programmers!
- Entry level is very low



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience
- Used even in in application codel
- Used even by new D programmers!
- Entry level is very low

- ‘static if” is instantly understood



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience
- Used even in in application codel
- Used even by new D programmers!
- Entry level is very low

- ‘static if” is instantly understood

- ROl is excellent



s@ciomantic

METAPROGRAMMING

@ Expectation
- Easier than in G++

- But still only used by wizards, in libraries

@ Experience
- Used even in in application codel
- Used even by new D programmers!
- Entry level is very low

- ‘static if” is instantly understood

- ROl is excellent

@ Improves programmer morale



seciomantic
ERROR MESSAGES

@ Expectation



s@ciomantic

ERROR MESSAGES

@ Expectation
- Lowest importance of any type of compiler bug



s@ciomantic

ERROR MESSAGES

@ Expectation
- Lowest importance of any type of compiler bug

@ EXxperience



s@ciomantic

ERROR MESSAGES

@ Expectation
- Lowest importance of any type of compiler bug

@ EXxperience
- Make advanced features seem simpler



s@ciomantic

ERROR MESSAGES

@ Expectation
- Lowest importance of any type of compiler bug

@ EXxperience
- Make advanced features seem simpler
- Have a pedagogic role



s@ciomantic

ERROR MESSAGES

@ Expectation
- Lowest importance of any type of compiler bug

@ EXxperience
- Make advanced features seem simpler
- Have a pedagogic role
- Good error messages save time.. and time is money



s@ciomantic

ERROR MESSAGES

@ Expectation
- Lowest importance of any type of compiler bug

@ EXxperience
- Make advanced features seem simpler
- Have a pedagogic role
- Good error messages save time.. and time is money
- Error messages are the reason we use statically-typed languages!



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation
@ Huge win! Used everywhere

@ Subliminal metaprogramming!



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...

@ Experience



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...
@ Experience

«@ CTFE hardly gets used, because it’s too slow



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...
@ Experience

«@ CTFE hardly gets used, because it’s too slow
- Fast compilation is addictivel



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...
@ Experience

«@ CTFE hardly gets used, because it’s too slow
- Fast compilation is addictivel

@ Why isnt it fast yet?



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...
@ Experience

«@ CTFE hardly gets used, because it’s too slow
- Fast compilation is addictivel

@ Why isnt it fast yet?

- Because of the history



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...
@ Experience

«@ CTFE hardly gets used, because it’s too slow
- Fast compilation is addictivel

@ Why isnt it fast yet?
- Because of the history
- Many unintended dependencies



s@ciomantic

COMPILE TIME FUNCTION EXECUTION

@ Expectation

@ Huge win! Used everywhere

@ Subliminal metaprogramming!

@ Increased power will increase adoption

- Pointers, throw exceptions, ...
@ Experience

«@ CTFE hardly gets used, because it’s too slow
- Fast compilation is addictivel

@ Why isnt it fast yet?
- Because of the history
- Many unintended dependencies
- Front-end must be in a valid statel



seciomantic
TUTORIALS

@ Expectation



s@ciomantic

TUTORIALS

@ Expectation
- Tutorials are almost irrelevant



s@ciomantic

TUTORIALS

@ Expectation
- Tutorials are almost irrelevant

@ EXxperience



s@ciomantic

TUTORIALS

@ Expectation
- Tutorials are almost irrelevant

@ Experience
- Absence of tutorials is an embarassment



seciomantic
COMPILER BUGS

@ Much smaller problem than expected



seciomantic
COMPILER BUGS

@ Much smaller problem than expected

@ Template bugs rarely encountered in D1



seciomantic
COMPILER BUGS

@ Much smaller problem than expected
@ Template bugs rarely encountered in D1

@ 64 bit code generation a nightmare



seciomantic
COMPILER BUGS

@ Much smaller problem than expected
@ Template bugs rarely encountered in D1

@ 64 bit code generation a nightmare
- But mostly a one-off cost borne by us



seciomantic
COMPILER BUGS

@ Much smaller problem than expected
@ Template bugs rarely encountered in D1

@ 64 bit code generation a nightmare
- But mostly a one-off cost borne by us

@ Otherwise, IDE bugs much worse



seciomantic
SUMMARY

@ D is moving out of research mode



s@ciomantic

SUMMARY

@ D is moving out of research mode
- We can no longer ignore implementation issues



s@ciomantic

SUMMARY

@ D is moving out of research mode
- We can no longer ignore implementation issues

@ A Return-On-Investment model is useful



s@ciomantic

SUMMARY

@ D is moving out of research mode
- We can no longer ignore implementation issues

@ A Return-On-Investment model is useful
- D must deliver value in the near-term



s@ciomantic

SUMMARY

@ D is moving out of research mode
- We can no longer ignore implementation issues

@ A Return-On-Investment model is useful
- D must deliver value in the near-term

@ Metaprogramming is a strength of D in the real world



s@ciomantic

SUMMARY

@ D is moving out of research mode
- We can no longer ignore implementation issues

@ A Return-On-Investment model is useful
- D must deliver value in the near-term

@ Metaprogramming is a strength of D in the real world
- D does deliver ROI for Sociomantic Labs



s@ciomantic

SUMMARY

@ D is moving out of research mode
- We can no longer ignore implementation issues

@ A Return-On-Investment model is useful
- D must deliver value in the near-term

@ Metaprogramming is a strength of D in the real world
- D does deliver ROI for Sociomantic Labs
- But not yet in all areas



s@ciomantic

WE’RE HIRING!

/

www.sociomantic.com



