5/17/13 1

USING D ALONGSIDE A
TYPICAL GAME ENGINE

With Manu of Brisbane

D IS AWESOME...
BUT CAN IT BE USED INA

COMMERCIAL GAME?

Let me tell you a story...

5/17/13

“How did we come to this?”, | hear you ask...

We need a scripting
language!

he’s right!

5/17/13

“How did we come to this?”, | hear you ask...

We should use C!

5/17/13

Considerations

— *hEA® Ak

188,08 ¢ %k k
N 1. 8. 8.8, 8
* Ak ko kkok

We should

5/17/13

So we took it to the team...

Someone
We should use D! buy this man

a drink!

oy
P

he’s right!

What is this .

D thing? (‘

f’
d"

Interesting...

5/17/13 7

s it ready?

This is a fair concern...
D has little experience in the commercial space.

Hedge our bets:
- Initial plan was to use C-in-a-DLL

- Build a framework that works with either language
- If D doesn’t work out, fall back to C/C++

AND THUS IT BEGINS...

5/17/13

Requirements

- Windows/Visual Studio workflow

. Visual-D! e Xeoso B D

- Target x64/Win64
- Symbolic Debugging

: 'xz No DMD! (only supports Win32
[,A (only supp)

5/17/13

Options?

-LDC?
- No Win64 exceptions or debug info

-GDC?
- Working Win64 build! 've always wanted
- 2 enthusiastic developers to support Win64:
- Good for prototype... |

- We really need DMD

SO WE HAVE A COMPILER

What do we do with it?

5/17/13

Goals

- Rapid iteration

- Dynamic linkage

- Interact with the engine

- Offer new functionality to the engine

- Retain objects state across update cycle

5/17/13

1. Rapid iteration

Filesystem
monitor service

5/17/13

1. Rapid iteration

Filesystem
monitor service

5/17/13

1. Rapid iteration

Lots of code... How do we build?

Jmcore

»vector.d
matrlx d

J,Benglne
oheap.d
entity.d
renderer.d

lugins

oenemyd > R enemydi
hud.d > %/ hud.dil

Sl (gl

o

| (S (g

'O

L

Sl (g

5/17/13

1. Rapid iteration

Compiling performed in 2 passes

i

CY 2
2 2

Deps list
* heap.d
« vector.d
« entity.d

Debug

Release

5/17/13

2. Dynamic Linkage

We now have ‘plugin’ DLL’s, we need to load them...

We wrote a fairly simple PluginManager, which:
- Scans for any plugins and loads them on startup

- When it receives an update signal:
- Save the state of all object instances created by the plugin
- Unload the DLL
- Reload the rebuilt DLL

- Recreate object instances from the saved state

The implementation is not particularly interesting.
...and we’'ll talk about the state management later.

5/17/13

3. Interact with the engine

So we have a system that will manage our plugins.
To be useful, they need access to the engine...
Which it turns out is not so simple!

D needs access to C++;

- Structs
- Static functions
- Classes

We'll look at each of these...

5/17/13

3. Interact with the engine

Structs

- Mirror definition in D

- No way to assert that C++ and D definitions remain in
synch...

- I'm open to suggestion!

5/17/13

3. Interact with the engine

Functions

- D supports C/C++ ABI
- C++ reqistry of functions to share with D
- D stubs which link on module load

- Not so hard right?

5/17/13

3. Interact with the engine

In practise - Uh oh, code!

. experiment.cpp

9l

void engineFunc(int x, float y)
{
// awesome functionality!
}
EXPORT_FUNCTION(engineFunc) // you don’t wanna know!
5 experiment.d

__gshared extern (C) void function(int x, float y) engineFunc;

mixin RegisterModule; shared static this()

{

registerImports(
(EngineImport imports[]) {
engineFunc = findFunction(imports, "engineFunc");

Ssa.
~
-~
~
~
~
~
~

}
)s
}

5/17/13

3. Interact with the engine

Surely we can do better than that...

void engineFunc(int x, float y);

mixin RegisterModule; |! shared static this()

{
~~~~~~~~ registerImports(
~~~~~~~ (EngineImport imports[]) {
™ engineFuncPtr = findFunction(imports, "engineFunc");
}
)
}

void engineFunc(int x, float y);

{

engineFuncPtr(x, y);

}

private _ gshared extern (C) void function(int, float) engineFuncPtr;

- Now we can prototype and declare in the same module...

- Enhance the mixin to generate a stub

5/17/13

3. Interact with the engine

Supporting overloads - on the C++ side

void engineFunc(int x, int y)
{

// awesome functionality!

}

void engineFunc(int x, float y)

{

// even more awesome functionality!

}

EXPORT_FUNCTION(engineFunc, void, int, int) // you RELLY don’t wanna see this now!
EXPORT_FUNCTION(engineFunc, void, int, float)

#RET_TYPE "(" #_VA_ARGS__ ")" == "void(int, float)"

- Supply the argument information to disambiguate
- Use stringification to generate a function signature string

5/17/13

3. Interact with the engine

Supporting overloads - on the D side

void engineFunc(int x,

void engineFunc(int x, float y);

int y);

mixin RegisterModule;

~.,
~S.
~,
~,
~.
~.
~.,
~.
~.,
~,
S
~,
~.
~
e

shared static this() {
registerImports(
(EngineImport imports[]) {
engineFunc_int_int findFunction(imports, "engineFunc", "void(int,int)");
engineFunc_int_float = findFunction(imports, "engineFunc", "void(int,float)");
}
)s
}

private _ gshared extern (C) void function(int, int) engineFunc_int_int;
void engineFunc(int x, int y) {
engineFunc_int_int(x, y);

}

private _ gshared extern (C) void function(int, float) engineFunc_int_float;
void engineFunc(int x, float y) {
engineFunc_int_float(x, y);

}

- Generate a similar string from the D type info
- Mangle the function pointer names

5/17/13

3. Interact with the engine
Attributes!

private|@Import| void engineFunc(int *things, size_t numThings);

void engineFunc(int[] things)

{
engineFunc(things.ptr, things.length);

}

mixin RegisterModule;

- Provide nice D API’s with trivial wrappers
- RegisterModule recognises functions marked @Import

- Awesome! Maybe we’re done here?

5/17/13

3. Interact with the engine

Classes

D does not interact with C++ classes very well.
- Can’t extern to C++ methods
- Virtuals are tricky

5/17/13

3. Interact with the engine

Static methods

class EngineClass

{

void method(int x);

}

EXPORT_METHOD(EngineClass, engineFunc, void, int, float)

struct EngineClass

{
@Import void method(int x);

mixin RegisterClass;

}
. | private extern (C) __gshared void function(EngineClass* _this, int x) method_int;
mixin Regist¢ void method(int x)
{
method_int(&this, x); // explicitly call with ‘this’
}

- Export a C++ member function pointer
- Declare just like other functions, but we have some new magic...
- Abuse our knowledge of the ABI. Not portable!

5/17/13

3. Interact with the engine
And finally, virtuals...

class EngineClass

{

virtual void virtualMethod();

}

extern (C++) interface IEngineClass

{
void virtualMethod();

}

struct EngineClass

{
@property IEngineClass _vtable() { return cast(IEngineClass)&this; }

alias _vtable this;

}

- We don’t need to do anything in C++!
- Use an ‘extern(C++) interface’to mirror the vtable
- Use ‘alias this’ to incorporate it into a struct

5/17/13

4. Making use of plugins

The game needs to make use of this somehow!

- Same features in reverse

- But no existing code, we can make restrictions
- Static functions
- Opaque classes
- Use interfaces

Let’s look at these in practise... (more code, sorry!)

5/17/13

4. Making use of plugins

Static functions

@Export extern (C++) void dFunc(int x)

{

// do something amazing!

}

mixin RegisterModule; // RegisterModule handles @(Export) too!

void somewhere()

{

DFunc<int> dFunc = PluginManager::findFunction("dFunc");

if(dFunc)
dFunc(42);

}

- Find functions by name
- DFunc implements a smart pointer to handle module reload

- C++ can'’t assert the signature matches
- Perhaps a template solution is possible?

5/17/13

4. Making use of plugins

Classes - on the D side

@Export extern (C++) interface IFeature

mixin RegisterModule;

exportClass(
/+ name: +/ "Feature",
/+ create: +/ ()

/+ destroy: +/ (Object o)
)
}

{ void doSomething();
}
@Export class Feature : IFeature
{ extern (C++) void doSomething()
{ // do something.. shared static this()
} J ¢ exportInterface("IFeature”, (Object o) => cast(IFeature)o);

=> new Feature,
=> delete cast(Feature)o

- Interface registers cast function
- Class registers create/destroy functions

5/17/13

4. Making use of plugins

Classes - on the C++ side

class IFeature

{

virtual void doSomething() = ©;

}

void somewhere()

{

DClass *pClass = PluginManager::newClass("Feature");

IFeature *pFeature = pClass->queryInterface("IFeature");
if(pFeature)
pFeature->doSomething();

pClass->deleteClass();
}

- Declare a mirror of the exported interface

- Create new class instance by name

- Query the opaque DClass object for interfaces

- If the class implements that interface, we can use it

5/17/13

4. Making use of plugins

We have everything we need!

We can create new entities that exist in the game world...
But what happens when a live class definition is changed?

Hint: It crashes spectacularly!

Which leads to our final goal...

5/17/13

5. Retain object state

Runtime code iteration is the principle goal...
What if we modify a data structure?

class Dude

{

vector position;
float health;
}

class Dude

{

vector position;

vector velocity; // add a new variable..
float health;

}

Existing objects are incompatible with rebuilt code.

We can use serialisation to migrate the data...

5/17/13

5. Retain object state

Approach:
- PluginManager keeps registry of all instances

- RegisterModule mixin produces serialisation functions for
structs/classes

Reload process:

- All instances are serialised to text
- Destroy all instances

- Unload/reload plugin

- Recreate instances from text
- New members take on default values

- If variable changes meaning, we may still crash!
- But this is rare

5/17/13

Afterthoughts & improvements

We have a system that's working well.
But there are a few rough edges...

- Every module requires mixin RegisterModule
- Classes require additional mixin RegisterClass
- Be nice if attributes had a method of introducing code...
- Can’t assert that structures or virtuals remain in synch
- D -> C++ function sharing can’t assert the signature

- These are really deficiencies in C++
- Can C++ templates help us?

WE HAVE A SYSTEM

So, what cool things does it offer?

5/17/13

Stuff programmers love...

We have D as an extension language!
But what makes it cool, and worth all that effort?

1. Coders love ranges, and foreach
- Seriously, slices are awesome!
- foreach should not be under-estimated

2. Event based programming
- Game devs often have C# experience
- Proper delegates facilitate nice event frameworks
- C++ FastDelegate is compatible with D! (I'll bet this isn’t a coincidence...)

5/17/13

Stuff programmers love...

3. Vector maths
- Standardised SIMD!

- opDispatch can be used for shader-style swizzling
- Game devs often have HLSL/GLSL experience

vector cross(vector vl, vector v2)

{

return vl.yzx*v2.zxy - vl.zxy*v2.yzx;

}

- Perhaps experiment with DSLs in future?
- Theoretically, pure should offer some nice wins...

5/17/13

Stuff programmers love...

4. Attributes are awesome!
- Really help to simplify code
- Great to see what class members can do at a glance

Some attributes we use:

- @SaveGame
- Control variables that are written to save data
- @Profile
- Variables will be tracked and charted on realtime graphs
- @Tweakable
- Variables will be added to a runtime ‘tweakable’ menu
- @Editor(“Enemy colour”, Colour.Red, Type.ColourPicker)
- Variable is exposed to the editor, where property grids are automatically populated

5/17/13

Final thoughts

Video games industry still stuck with C++!
- Native code is a requirement.

- High-risk industry, allergic to change.
- Aggressive schedules; C++ wastes time & sanity.

Industry desperate for salvation.

Using this approach, if D proves successful, we can ween
ourselves towards D in the future...

...and may we all live happily ever after.

5/17/13

THAT'SIT

42

Questions?

