
EFFECTIVE SIMD FOR
MODERN ARCHITECTURES

With Manu of Brisbane

6/19/13 1

What is SIMD?
SIMD, or ‘Scottish Index of Multiple Deprivation’…

 …erm, thanks google!

Rather, Single Instruction Multiple Data, is a technology
present in many modern CPU architectures which offers
parallel operations on short arrays of data.

That sounds cool!

Note: I was googling if ‘Multiple’ or ‘Many’

6/19/13 2

What is SIMD?
In practise, say we have iterative code like this:

SIMD architecture allows us to effectively perform:

Effectively quadrupling our throughput! *

(*) Nothing is ever so simple!

6/19/13 3

int$data[100];$

$

for(inti=$0;$i$<$data.length;$++i)$

{$

$$data[i]$+=$10;$

}$

for(inti=$0;$i$<$data.length;i+=$4)$

{$

$$data[i$+$0]$+=$10;$//$these$operations$are$performed$simultaneously!$

$$data[i$+$1]$+=$10;$

$$data[i$+$2]$+=$10;$

$$data[i$+$3]$+=$10;$

}$

What is SIMD?
Using SIMD hardware is a low-level optimisation, and best
applies to tight work loops.

SIMD may improve performance in a few important ways:
• Reduce instructions issued
• Reduce loop Iterations
•  Increase data bandwidth
• Reduce program code size
• Specialised instructions to perform complex tasks

6/19/13 4

How do we use it?
Usually accessed via a special set of instructions, and
specialised multi-element data registers.

SIMD registers are often able to be reinterpreted as
various different types, for instance:

* Interesting to note; SIMD registers may contain float or integer data

6/19/13 5

float float float float

int int int int

double double

short short short short short short short short

b b b b b b b b b b b b b b b b

double[2]$

float[4]$

int[4]$

short[8]$

byte[16]$

128bit (16 byte) SIMD register:

How do we use it?
In D, we access this hardware via the __vector() intrinsic:

core.simd also provides a suite of helpful aliases:

It’s important to note that these are intrinsic types that
map to the hardware directly.
type[width] pairs which are not supported by the target
architecture produce compile errors.

6/19/13 6

import$core.simd;$

$

__vector(float[4])$myVector;$

alias$__vector(double[2])$$double2;$

alias$__vector(int[4])$$$$$int4;$

alias$__vector(byte[16])$$$byte16;$

//etc

How do we use it?
Standard set of operators can be used with SIMD types.
Perform operations element-wise:

In this way, they work just like regular D array operations.

6/19/13 7

import$core.simd;$

$

float4$v1$=$[1,2,3,4];$

float4$v2$=$[5,6,7,8];$

float4$result$=$v1$+$v2;$

1 2 3 4

5 6 7 8

6 8 10 12

 + + + +

 = = = =

v1

v2

result

How do we use it?
Let’s consider our previous example:

Applying SIMD logic, we get:

• Only 25 iterations
•  Improved bandwidth

6/19/13 8

int$data[100];$

$

foreach(i;0..$data.length)$

{$

$$data[i]$+=$10;$

}$

int4$data[100$/$int4.length];$

int4$tens$=$[10,$10,$10,$10];$//$we$need$a$vector$with$10’s$

$

foreach(i;0..$data.length)$

{$

$$data[i]$+=$tens;$

}$

How do we use it?
SIMD can greatly accelerate iterative tasks; scalar
workloads processed in parallel.

But another popular use is to consider the elements as
components of a 4d vector.

Though functionally identical, this perspective applies better
to linear algebra.

6/19/13 9

x y z w

How do we use it?
Linear algebra is popular in various fields of computing:
•  Image processing
• Geometry processing/rendering
• Simulation/physics

I’ll focus on this perspective for the majority of this talk.

6/19/13 10

Limitations
So we understand the basic technology…
To make good efficient use of the hardware, we need to
understand some restrictions and limitations.

FAQ: Why require the __vector()$intrinsic? Why not work
with standard D arrays?

A: SIMD hardware is not as flexible as regular arrays.
__vector()$enforces rules associated with the hardware.
Reserves the right to produce compile errors for
unsupported type[width] combinations.

6/19/13 11

Limitations
Limitations are non-uniform across different architectures.

But a set of best-practises can be applied that will:
• Get good performance from all architectures
• Won’t hinder any particular architecture
• Maximise portability

Let’s look at some of these…

6/19/13 12

Limitations
1. Test all target architectures.

Not a best-practise as such, but a requirement:
Programmers will need to test their code on all target
architectures!

Typical approach is to provide a fall-back routine using
regular D code and only enable SIMD for tested hardware.

Discussions about a ‘portable’ SIMD library ongoing…

6/19/13 13

Limitations
2. Data alignment to register width.

The __vector() intrinsic will force alignment.
•  Take care when laying out structures and memory.
• Avoid wasteful padding.

Let’s consider an example…

6/19/13 14

Limitations
2. Data alignment to register width.

Looks innocent, one might imagine it is 4 + 16 + 4 = 24 bytes.
But, due to alignment requirements, the struct is internally rewritten.
Turns out the struct is actually 4 + 12 + 16 + 4 + 12 = 48 bytes!
We can improve the situation by reordering the structure.
16 + 4 + 4 + 8 = 32 bytes, better, but there's still 8 bytes waste…
These 8 bytes can't be eliminated, so you might as well use them!
•  Put some other useful data, or cached values in that space?

6/19/13 15

struct$Dude$

{$

$$int$$$$$$health;$

$$float4$$$position;$

$$float$$$$velocity;$

}$

$

$

struct$Dude$

{$

$$int$$$$$$health;$

$$void[12]$__padding;$$$$$//$required$to$align$'position'to16$bytes$

$$float4$$$position;$

$$float$$$$velocity;$

$$void[12]$__morePadding;$//$gotcha!$

}$

struct$Dude$

{$

$$float4$$$position;$

$$int$$$$$$health;$

$$float$$$$velocity;$

$$void[8]$$__padding;$

}$

$

Limitations
3. SIMD vectors don't interact with scalar types.

It seems natural to express scalar values with scalar types,
but SIMD types only interact efficiently with other SIMD
types.

Don’t:

Do:

Move conversions as far outside loops as possible.

6/19/13 16

float$$scale$=$2;$

float4$v;$

$

v$=$v$*$scale;$//$***$vector/float$multiply!$***$

float4$scale$=$[$2,$2,$2,2];$

float4$v;$

$

v$=$v$*$scale;$

Limitations
4. Individual elements are not randomly accessible; must
be digested in parallel!

Consider:

The array indexing syntax is removed from __vector()'s.
Perform operations on all elements in parallel

•  You may need to get quite creative!
If random access is absolutely required, use the .array property

•  Expect serious performance penalties!

6/19/13 17

$

$

float4$v;$

v[1]$=$0;$//$set$second$elementto0$

$

$

float4$v;$

v[1]$=$0;$//$set$second$elementto0$***$Error!$Can’t$index!$***$

enum$float4$zeroSecondElement$=$[$1,0,1,1$];$

$

float4$v;$

v$*=$zeroSecondElement;$//$v$=$[$v[0]*1,$v[1]*0,$v[2]*1,$v[3]*1$]$

$

$

float4$v;$

v.array[1]$=$0;$//$don'tdothis$unless$you$know$what$you're$doing!$

std.simd$

So now we have a pretty good understanding of SIMD.
How can we easily put this all to use, while considering the
limitations presented?

Enter std.simd, the goals of which are to:
• Provide a complete set of higher-level functions
• Map efficiently to the underlying architecture
• API encourages best practises
•  Fill any gaps in hardware support

•  But only if it can be done efficiently!

6/19/13 18

std.simd$

Let’s have a quick look at the sort of functions available…

Basic maths:
•  abs,$neg,$add,sub
•  mul,$min,$max$
Operators are available, but these functions can increase portability.

Bitwise operations:
•  comp,$or,$xor,and
•  nor,$nand,$andNot$
Note the nor, nand, andNot functions. These can take advantage of a
free compliment on some architectures!

6/19/13 19

std.simd$

Compound maths:
•  madd,$msub,$nmadd,$nmsub$
Many architectures offer fused multiply-accumulate instructions, which
can greatly improve efficiency. Use these wherever applicable!

Complex maths:
•  rcp,$div,$sqrt,$rsqrt$
sin/cos/pow will likely appear in the future.

Linear algebra:
•  dot,$cross,$magnitude,$normalise$
Typical suite of linear algebra functions.

6/19/13 20

std.simd$

Fast estimates:
•  rcpEst,$divEst,$sqrtEst,$rsqrtEst$
•  magEst,$normEst$
Attempt to be as fast as possible. Precision may be reduced, and may
differ slightly between architectures.

Element permutation:
•  permute/swizzle,$interleave,$broadcast$
•  unaligned$load$
Functions that rearrange elements within vectors.

Shifts:
Comprehensive set of functions to shift/rotate elements.

6/19/13 21

std.simd$

Type conversion:
•  Type conversion/casting
•  Data packing/unpacking

Comparisons:
•  Full suite of comparisons
Can produce bit-masks, or boolean ‘any’/‘all’ logic.

Branchless selection:
Branchless element-wise selection based on comparison, or predicate.

And much more!

6/19/13 22

std.simd$

std.simd makes great effort to provide a uniform API, but if
the target architecture can’t perform an operation efficiently,
it will produce a compile error.

This is deliberate; programmers are better to stop and
reconsider the problem than un-knowingly use a slow
emulation of a function they require.

Users may write vector libraries above std.simd, filling in
remaining gaps with compromises they are comfortable
with in their project.

6/19/13 23

Getting the best performance
Using these functions alone will not yield the best results.

Implementing good SIMD code will often just result in a
different bottleneck holding you up.

Only by eliminating all bottlenecks will you truly unleash
your code.

Let’s look at some common associated performance
hazards you should also be aware of…

6/19/13 24

Getting the best performance
1. Minimise memory access.

Memory is slow, particularly on embedded architectures.

• Consider the allocation of your variables in registers
• Pre-load outside loops wherever possible
• Never cast between register types (int/float/simd)

•  These casts usually transfer registers via memory

6/19/13 25

Getting the best performance
2. The ABI supports vector arguments, use them.

Always pass vectors by value.
This way, they will be passed in a register and avoid
accessing the stack. (more unnecessary memory access!)

People are often in the habit of passing their non-SIMD
vector classes by reference. Don’t transfer that habit.

6/19/13 26

Getting the best performance
3. Use ‘leaf’ functions where possible.

‘Leaf functions’ are functions that don’t allocate a stack
frame at all. (again, eliminate memory access)
There are some criteria to qualify as a leaf function:
•  Can't call any sub-functions (unless they inline)
•  Can't receive any non-primitive arguments by value
•  May not return a structure by value
•  Don’t cast between register types (int/float/simd)
•  Use few enough locals that fit in the processors registers

This results in good gains, especially within hot loops!

6/19/13 27

Getting the best performance
4. Only cast SIMD types

If you need to cast float<->int, do it in SIMD.

Typically, a cast requires swapping register types, which
passes the value through memory.
SIMD registers can hold both int and float data, so they can
cast without accessing memory!

6/19/13 28

Getting the best performance
5. Avoid unaligned loads

Unaligned loads are a slow process…

Load 2 aligned vectors:

Shift left and right:

‘Or’ the 2 vectors together:

6/19/13 29

x y z col u v x y z col u v
 0 4 8 C 10 14 18 1C 20 24 28 2C
30

u v x y z col u v

x y 0 0 0 0 z col

x y z col

Getting the best performance
6.a. Pipelining

SIMD operations tend to have higher latency, and increase
dependence on past results vs normal code.

Unrolling loops a little can help fill the pipeline with work.

6/19/13 30

Getting the best performance
6.b. Pipelining

Reduce operation dependencies.

The optimiser will help where it can, but don’t rely on it!

6/19/13 31

r$=$x$+$y$+$z$+$w;$

r$=$(x$+$y)$+$(z$+$w);$

CPU cycles

r = x + y
r = r + z

r = r + w

u = x + y

r = u + v
v = z + w

Getting the best performance
7. Bandwidth

Aggressively optimised code will almost always become
bandwidth limited.
Tips to improve memory bandwidth:
• Pack your data where possible

•  Preferably into 16-byte blocks (single, aligned load)
•  Unpacking is usually faster than fetching memory

• Be aware of the d-cache
•  Access memory linearly
•  Keep random-access memory close (in pools?)

• Experiment with prefetching?

6/19/13 32

In summary
To recap, what have we learned?
•  Test all target architectures, provide standard D fallback code
•  Pay careful attention to data alignment
•  Avoid accessing individual elements
•  Avoid casting between int/float/simd
•  Use compound operations wherever able (madd, nor, andNot, etc)
•  Avoid memory (args by value, leaf functions, don’t cast)
•  Avoid unpredictable ‘if’s, prefer select-style logic
•  Minimise data structures (multiples of 16 bytes)
•  Pay attention to pipeline; unroll loops, concurrent tasks where possible

6/19/13 33

Congratulations!

You are now an expert at SIMD programming.

Questions?

6/19/13 34

