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What is SIMD? 
SIMD, or ‘Scottish Index of Multiple Deprivation’… 
 

  …erm, thanks google! 
 
 
Rather, Single Instruction Multiple Data, is a technology 
present in many modern CPU architectures which offers 
parallel operations on short arrays of data. 
 
That sounds cool! 

 
Note: I was googling if ‘Multiple’ or ‘Many’ 
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What is SIMD? 
In practise, say we have iterative code like this: 
 
 
 
SIMD architecture allows us to effectively perform: 
 
 
 
 
 

Effectively quadrupling our throughput! * 
 

(*) Nothing is ever so simple! 
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int$data[100];$

$

for(int$i$=$0;$i$<$data.length;$++i)$

{$

$$data[i]$+=$10;$

}$

for(int$i$=$0;$i$<$data.length;$i$+=$4)$

{$

$$data[i$+$0]$+=$10;$//$these$operations$are$performed$simultaneously!$

$$data[i$+$1]$+=$10;$

$$data[i$+$2]$+=$10;$

$$data[i$+$3]$+=$10;$

}$



What is SIMD? 
Using SIMD hardware is a low-level optimisation, and best 
applies to tight work loops. 
 
SIMD may improve performance in a few important ways: 
• Reduce instructions issued 
• Reduce loop Iterations 
•  Increase data bandwidth 
• Reduce program code size 
• Specialised instructions to perform complex tasks 
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How do we use it? 
Usually accessed via a special set of instructions, and 
specialised multi-element data registers. 
 

SIMD registers are often able to be reinterpreted as 
various different types, for instance: 
 
 
 
 
 
 
 

* Interesting to note; SIMD registers may contain float or integer data 
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float float float float 

int int int int 

double double 

short short short short short short short short 

b b b b b b b b b b b b b b b b 

double[2]$

float[4]$

int[4]$

short[8]$

byte[16]$

128bit (16 byte) SIMD register: 



How do we use it? 
In D, we access this hardware via the __vector() intrinsic: 
 
 
core.simd also provides a suite of helpful aliases: 
 
 
 
It’s important to note that these are intrinsic types that 
map to the hardware directly. 
type[width] pairs which are not supported by the target 
architecture produce compile errors. 

6/19/13 6 

import$core.simd;$

$

__vector(float[4])$myVector;$

alias$__vector(double[2])$$double2;$

alias$__vector(int[4])$$$$$int4;$

alias$__vector(byte[16])$$$byte16;$

//$etc$



How do we use it? 
Standard set of operators can be used with SIMD types. 
Perform operations element-wise: 
 
 
 
 
 
 
 
In this way, they work just like regular D array operations. 
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import$core.simd;$

$

float4$v1$=$[1,2,3,4];$

float4$v2$=$[5,6,7,8];$

float4$result$=$v1$+$v2;$

1 2 3 4 

5 6 7 8 

6 8 10 12 

  +       +       +       + 

  =       =       =       = 

v1 

v2 

result 



How do we use it? 
Let’s consider our previous example: 
 
 
 
Applying SIMD logic, we get: 
 
 
 
 
 

• Only 25 iterations 
•  Improved bandwidth 
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int$data[100];$

$

foreach(i;$0$..$data.length)$

{$

$$data[i]$+=$10;$

}$

int4$data[100$/$int4.length];$

int4$tens$=$[10,$10,$10,$10];$//$we$need$a$vector$with$10’s$

$

foreach(i;$0$..$data.length)$

{$

$$data[i]$+=$tens;$

}$



How do we use it? 
SIMD can greatly accelerate iterative tasks; scalar 
workloads processed in parallel. 
 
But another popular use is to consider the elements as 
components of a 4d vector. 
 
 
 
Though functionally identical, this perspective applies better 
to linear algebra. 
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x y z w 



How do we use it? 
Linear algebra is popular in various fields of computing: 
•  Image processing 
• Geometry processing/rendering 
• Simulation/physics 
 
I’ll focus on this perspective for the majority of this talk. 
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Limitations 
So we understand the basic technology… 
To make good efficient use of the hardware, we need to 
understand some restrictions and limitations. 
 
FAQ: Why require the __vector()$intrinsic? Why not work 
with standard D arrays? 
 
A: SIMD hardware is not as flexible as regular arrays. 
__vector()$enforces rules associated with the hardware. 
Reserves the right to produce compile errors for 
unsupported type[width] combinations. 
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Limitations 
Limitations are non-uniform across different architectures. 
 
But a set of best-practises can be applied that will: 
• Get good performance from all architectures 
• Won’t hinder any particular architecture 
• Maximise portability 

Let’s look at some of these… 

6/19/13 12 



Limitations 
1. Test all target architectures. 

Not a best-practise as such, but a requirement: 
Programmers will need to test their code on all target 
architectures! 
 
Typical approach is to provide a fall-back routine using 
regular D code and only enable SIMD for tested hardware. 
 
Discussions about a ‘portable’ SIMD library ongoing… 
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Limitations 
2. Data alignment to register width. 
 
The __vector() intrinsic will force alignment. 
•  Take care when laying out structures and memory. 
• Avoid wasteful padding. 
 
Let’s consider an example… 
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Limitations 
2. Data alignment to register width. 
 
 
 
 
Looks innocent, one might imagine it is 4 + 16 + 4 = 24 bytes. 
But, due to alignment requirements, the struct is internally rewritten. 
Turns out the struct is actually 4 + 12 + 16 + 4 + 12 = 48 bytes! 
We can improve the situation by reordering the structure. 
16 + 4 + 4 + 8 = 32 bytes, better, but there's still 8 bytes waste… 
These 8 bytes can't be eliminated, so you might as well use them! 
•  Put some other useful data, or cached values in that space? 
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struct$Dude$

{$

$$int$$$$$$health;$

$$float4$$$position;$

$$float$$$$velocity;$

}$

$

$

struct$Dude$

{$

$$int$$$$$$health;$

$$void[12]$__padding;$$$$$//$required$to$align$'position'$to$16$bytes$

$$float4$$$position;$

$$float$$$$velocity;$

$$void[12]$__morePadding;$//$gotcha!$

}$

struct$Dude$

{$

$$float4$$$position;$

$$int$$$$$$health;$

$$float$$$$velocity;$

$$void[8]$$__padding;$

}$

$



Limitations 
3. SIMD vectors don't interact with scalar types. 
 

It seems natural to express scalar values with scalar types, 
but SIMD types only interact efficiently with other SIMD 
types. 
 

Don’t: 
 
 
 
Do: 
 
 

 
Move conversions as far outside loops as possible. 

6/19/13 16 

float$$scale$=$2;$

float4$v;$

$

v$=$v$*$scale;$//$***$vector/float$multiply!$***$

float4$scale$=$[$2,$2,$2,$2$];$

float4$v;$

$

v$=$v$*$scale;$



Limitations 
4. Individual elements are not randomly accessible; must 
be digested in parallel! 
 
Consider: 
 
 
 
The array indexing syntax is removed from __vector()'s. 
Perform operations on all elements in parallel 

•  You may need to get quite creative! 
If random access is absolutely required, use the .array property 

•  Expect serious performance penalties! 
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$

$

float4$v;$

v[1]$=$0;$//$set$second$element$to$0$

$

$

float4$v;$

v[1]$=$0;$//$set$second$element$to$0$***$Error!$Can’t$index!$***$

enum$float4$zeroSecondElement$=$[$1,0,1,1$];$

$

float4$v;$

v$*=$zeroSecondElement;$//$v$=$[$v[0]*1,$v[1]*0,$v[2]*1,$v[3]*1$]$

$

$

float4$v;$

v.array[1]$=$0;$//$don't$do$this$unless$you$know$what$you're$doing!$



std.simd$

So now we have a pretty good understanding of SIMD. 
How can we easily put this all to use, while considering the 
limitations presented? 
 
Enter std.simd, the goals of which are to: 
• Provide a complete set of higher-level functions 
• Map efficiently to the underlying architecture 
• API encourages best practises 
•  Fill any gaps in hardware support 

•  But only if it can be done efficiently! 
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std.simd$

Let’s have a quick look at the sort of functions available… 
 
Basic maths: 
•  abs,$neg,$add,$sub$
•  mul,$min,$max$
Operators are available, but these functions can increase portability. 
 

Bitwise operations: 
•  comp,$or,$xor,$and$
•  nor,$nand,$andNot$
Note the nor, nand, andNot functions. These can take advantage of a 
free compliment on some architectures! 
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std.simd$

Compound maths: 
•  madd,$msub,$nmadd,$nmsub$
Many architectures offer fused multiply-accumulate instructions, which 
can greatly improve efficiency. Use these wherever applicable! 
 

Complex maths: 
•  rcp,$div,$sqrt,$rsqrt$
sin/cos/pow will likely appear in the future. 
 

Linear algebra: 
•  dot,$cross,$magnitude,$normalise$
Typical suite of linear algebra functions. 
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std.simd$

Fast estimates: 
•  rcpEst,$divEst,$sqrtEst,$rsqrtEst$
•  magEst,$normEst$
Attempt to be as fast as possible. Precision may be reduced, and may 
differ slightly between architectures. 
 

Element permutation: 
•  permute/swizzle,$interleave,$broadcast$
•  unaligned$load$
Functions that rearrange elements within vectors. 
 

Shifts: 
Comprehensive set of functions to shift/rotate elements. 
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std.simd$

Type conversion: 
•  Type conversion/casting 
•  Data packing/unpacking 
 

Comparisons: 
•  Full suite of comparisons 
Can produce bit-masks, or boolean ‘any’/‘all’ logic. 
 

Branchless selection: 
Branchless element-wise selection based on comparison, or predicate. 
 

And much more! 
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std.simd$

std.simd makes great effort to provide a uniform API, but if 
the target architecture can’t perform an operation efficiently, 
it will produce a compile error. 
 
This is deliberate; programmers are better to stop and 
reconsider the problem than un-knowingly use a slow 
emulation of a function they require. 
 
Users may write vector libraries above std.simd, filling in 
remaining gaps with compromises they are comfortable 
with in their project. 
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Getting the best performance 
Using these functions alone will not yield the best results. 
 
Implementing good SIMD code will often just result in a 
different bottleneck holding you up. 
 
Only by eliminating all bottlenecks will you truly unleash 
your code. 
 
Let’s look at some common associated performance 
hazards you should also be aware of… 
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Getting the best performance 
1. Minimise memory access. 
 
Memory is slow, particularly on embedded architectures. 
 
• Consider the allocation of your variables in registers 
• Pre-load outside loops wherever possible 
• Never cast between register types (int/float/simd) 

•  These casts usually transfer registers via memory 
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Getting the best performance 
2. The ABI supports vector arguments, use them. 
 
Always pass vectors by value. 
This way, they will be passed in a register and avoid 
accessing the stack. (more unnecessary memory access!) 
 
People are often in the habit of passing their non-SIMD 
vector classes by reference. Don’t transfer that habit. 
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Getting the best performance 
3. Use ‘leaf’ functions where possible. 
 
‘Leaf functions’ are functions that don’t allocate a stack 
frame at all. (again, eliminate memory access) 
There are some criteria to qualify as a leaf function: 
•  Can't call any sub-functions (unless they inline) 
•  Can't receive any non-primitive arguments by value 
•  May not return a structure by value 
•  Don’t cast between register types (int/float/simd) 
•  Use few enough locals that fit in the processors registers 
 

This results in good gains, especially within hot loops! 
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Getting the best performance 
4. Only cast SIMD types 
 
If you need to cast float<->int, do it in SIMD. 
 
Typically, a cast requires swapping register types, which 
passes the value through memory. 
SIMD registers can hold both int and float data, so they can 
cast without accessing memory! 
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Getting the best performance 
5. Avoid unaligned loads 
 
Unaligned loads are a slow process… 
 

 
Load 2 aligned vectors: 
 
Shift left and right: 
 
‘Or’ the 2 vectors together: 
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x y z col u v x y z col u v 
 0              4              8               C             10             14            18            1C            20            24             28            2C            
30 

u v x y z col u v 

x y 0 0 0 0 z col 

x y z col 



Getting the best performance 
6.a. Pipelining 
 
SIMD operations tend to have higher latency, and increase 
dependence on past results vs normal code. 
 
Unrolling loops a little can help fill the pipeline with work. 
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Getting the best performance 
6.b. Pipelining 
 
Reduce operation dependencies. 
 
 
 
 
 
 
 
The optimiser will help where it can, but don’t rely on it! 
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r$=$x$+$y$+$z$+$w;$

r$=$(x$+$y)$+$(z$+$w);$

CPU cycles 

r = x + y 
r = r + z 

r = r + w 

u = x + y 

r = u + v 
v = z + w 



Getting the best performance 
7. Bandwidth 
 
Aggressively optimised code will almost always become 
bandwidth limited. 
Tips to improve memory bandwidth: 
• Pack your data where possible 

•  Preferably into 16-byte blocks (single, aligned load) 
•  Unpacking is usually faster than fetching memory 

• Be aware of the d-cache 
•  Access memory linearly 
•  Keep random-access memory close (in pools?) 

• Experiment with prefetching? 
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In summary 
To recap, what have we learned? 
•  Test all target architectures, provide standard D fallback code 
•  Pay careful attention to data alignment 
•  Avoid accessing individual elements 
•  Avoid casting between int/float/simd 
•  Use compound operations wherever able (madd, nor, andNot, etc) 
•  Avoid memory (args by value, leaf functions, don’t cast) 
•  Avoid unpredictable ‘if’s, prefer select-style logic 
•  Minimise data structures (multiples of 16 bytes) 
•  Pay attention to pipeline; unroll loops, concurrent tasks where possible 
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Congratulations! 
 

You are now an expert at SIMD programming. 
 
 
 

Questions? 
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