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WHAT?
	 Automatic memory management

WHAT FOR?
	 Simplify interfaces
	 Improve performance (!)
	 Avoid memory errors
		  -Dangling pointers
		  -Memory leaks
		  -Double free

INTRODUCTION
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HOW?

Reference counting

Semi-space copy

Mark & sweep
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STATE OF THE ART

50+ years of research & development (3000+ papers)

Goal
	 Execution time
	 Number of collections
	 Collection time
	 Pause time (maximum)

Techniques
	 -Partitions
	 -Concurrency
	 -Type information (precision/conservativeness)
	 -Static analysis
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CLARIFICATION

D1/TANGO ONLY! SORRY...
	 -But all shouldn’t be too different from druntime

UNIX ONLY
	 -And tested only on Linux
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HEAP STRUCTURE

HEAP > POOLS > PAGES > BLOCKS + FREE LISTS

Pool 0 Pool 1 Pool 2 Pool 3 Pool N

Heap

...

Page 0 Page 0 Page 0 Page 0 ... Page 0
(8x512) (4x1024) (64x64) (2x2048) ... (1x4096)

Block
Block

Block
Block

Block
Block

Block
Block

Block
Block

Block
Block

Block
Block

Block

Page 1 Page 1 Page 1 ... Page 1
(16x256) (8x512) (32x128) ... (1x4096)

Block

Block

Block

Block
Block

Block

Block

Block

Block
...
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BLOCKS

Fixed Size

Small Objects
	 -16 to 4096 bytes in powers of 2
	 -One page stores only one block size
	 -But blocks of the same size can live in discontinuous pages and different pools

Big objects
	 -Size multiple of page size (4096, 8192,...) 
	 -Each object lives in contiguous pages (and in the same pool)

Flags
	 -One bit set per pool 
	 -Several flags (bits) per block (mark, scan, free, etc.)
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ALGORITHM

Mark & Sweep
	 Iterative mark phase (no recursion)

Conservative
	 With a pinch of precision 

Allocation-triggered
	 Only kicks in when an allocation request can’t be fulfilled

Stop-the-world
	 Only in the mark phase (in theory)

Global lock
	 Too prone to extend the stop-the world time in practice

(NO_SCAN)
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FORK (2)

Page 1
Page 2
Page 3

Pre-fork

Parent Process VM

hello
Page Table

[used]

world

bye

[free]

Pre-Fork

Creates a new process (child) as 
a copy of the current one

Child process is born with 
a snapshot of the parent’s 
memory

Isolate modifications in parent 
and child’s memory

Minimizes the actual copy of 
memory (COW)

Starts with one thread only (the 
one called the              )

Very efficient

fork(2)
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FORK (2)

Page 1 Page 1
Page 2 Page 2
Page 3 Page 3

Post-fork

Parent Process VM Child Process

hello
Page Table Page Table

[used]

world

bye

[free]

Post-Fork

Creates a new process (child) as 
a copy of the current one

Child process is born with 
a snapshot of the parent’s 
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Isolate modifications in parent 
and child’s memory

Minimizes the actual copy of 
memory (COW)

Starts with one thread only (the 
one called the              )

Very efficient
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FORK (2)

Creates a new process (child) as 
a copy of the current one

Child process is born with 
a snapshot of the parent’s 
memory

Isolate modifications in parent 
and child’s memory

Minimizes the actual copy of 
memory (COW)

Starts with one thread only (the 
one called the              )

Very efficient

Page 1 Page 1
Page 2 Page 2
Page 3 Page 3

Parent write to Page 3

Parent Process VM Child Process

hello
Page Table Page Table

[used]

world

bye

Byeee

Parent write to Page 3fork(2)
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MAIN ALGORITHM

Based on “Non-intrusive Cloning Garbage Collector with Stock
Operating System Support” (Gustavo Rodriguez-Rivera and Vince
Russo)

Minimizes pause time through concurrent mark phase using 

Parent process keeps running the program

Child process runs the mark phase

Results are communicated through shared memory

Minimal synchronization: fork(2) + waitpid(2)

fork(2)
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PROBLEMS

Thread that triggered the collection is blocked until the end of the
collection is completed (including the concurrent mark phase)

Other threads might be potentially blocked too (global lock)

	

Real pause time ~= total collection time (not very concurrent
in practice)
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EAGER ALLOCATION

Creates a new pool before starting the concurrent mark phase
	 -Resolves the memory allocation with the new pool
	 -Runs the mark phase really concurrently

Let all program threads keep running in parallel to the mark phase

Compromise
		  Memory usage
		  Real pause time
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EARLY COLLECTION

Triggers a preemptive collection before the memory is really  
exhausted

Let all program threads keep running in parallel to the 
mark phase
	 -Until the memory is exhausted
	 -Doesn’t guarantee small pauses all the time

Might run more collections than necessary

Compromise
	  CPU usage (potentially)
	  Pause time (not guaranteed)

Combinable
	  -Eager allocation avoids blocking
	  -Early collection minimize potential high memory usage
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OTHER IMPROVEMENTS

Configurable at initialization-time 

Through environment variables (D_GC_OPTS=fork=0 ./prog)

Old compile-time options converted to initialization-time options
	 mem_stomp

	 sentinel

New options
	 pre_alloc
	 min_free
	 malloc_stats_file
	 collect_stats_file
	 fork
	 eager_alloc 
	 early_collect
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GENERALITIES

Multiple runs (20-50)
	 -Minimize measurement errors
	 -Results expressed in terms of:
		  -Minimum
		  -Average
		  -Maximum
		  -Standard deviation

Minimize variance between runs
	 -cpufreq-set(1)
	 -nice(1)
	 -ionice(1)

4 cores
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TESTBED

Trivial programs (7)
	 -Stress particular aspects
	 -Don’t perform a useful task
	 -Pathological cases

Small programs - Olden Benchmark (5)
	 -Relatively small (400-1000 SLOC)
	 -Perform an useful task
	 -Manipulate lots of lists and tree structures, allocating a lot
	 -Not exactly fair to GC benchmarking

Real program - Dil (1)
	 -D compiler written in D
	 -Fairly big and complex (32K+ SLOC, 86 modules, 300+ classes)
	 -Written without GC (limitations or advantages) in mind
	 -Strings, dynamic and associative array manipulation
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METRICS

MAXIMUM STOP-THE-WORLD TIME

MAXIMUM REAL PAUSE TIME

PEAK MEMORY USAGE

TOTAL EXECUTION TIME



29 / 37Introduction	   Current Collector	 Proposed Modifications	 Results	 Conclusion
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MAXIMUM REAL PAUSE TIME
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PEAK MEMORY USAGE
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TOTAL EXECUTION TIME
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SUMMARY

STOP-THE-WORLD TIME 160 TIMES LOWER
	 DIL: 1.66s -> 0.01s

REAL PAUSE TIME 40 TIMES LOWER
	 DIL: 1.7s -> 0.045s

PEAK MEMORY USAGE COULD BE 50% HIGHER
	 DIL: 213MiB -> 307MiB

TOTAL EXECUTION TIME 3 TIMES LOWER
	 DIL: 55s -> 20s

TESTED IN REAL WORLD 
USED IN SOCIOMANTIC FOR ALMOST 2 YEARS
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PROBLEMS, LIMITATIONS AND OUTSTANDING ISSUES

Memory usage explosion with eager allocation
	 Probably partly due to an (already fixed) bug

Improve prediction for early collection

Experiment with

Possible DEADLOCK when using glibc 
	 internal glibc mutex + signals + stopped threads

clone(2)
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FUTURE WORK

Sweep phase

Concurrency ! Global Lock

Stop-the-world without using signals

Moving collector
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QUESTIONS
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END

THANK YOU


