seciomantic
\

MAY 2013

CONCURRENT GARBAGE COLLECTION FORD

LEANDRO LUCARELLA

seciomantic

INTRODUCTION

WHAT?

@ Automatic memory management

WHAT FOR?

@ Simplify interfaces
@ Improve performance (!)

@ Avoid memory errors
-Dangling pointers
-Memory leaks
-Double free

seciomantic

@ Reference counting
@ Semi-space copy

@ Mark & sweep

seciomantic

CLASSIC ALGORITHMS

@ Reference counting
@ Semi-space copy

@ Mark & sweep

seciomantic

CLASSIC ALGORITHMS

@ Reference counting root hl

set
@ Semi-space copy r0 h6)IE h5

@ Mark & sweep

o)

rl h4 ——» h3

seciomantic

CLASSIC ALGORITHMS

@ Reference counting root
set
«@ Semi-space copy rO h5

@ Mark & sweep

rl h4 ——» h3

seciomantic

CLASSIC ALGORITHMS

@ Reference counting
@ Semi-space copy

@ Mark & sweep

root
set

ro

rl

h5

seciomantic

@ Reference counting
@ Semi-space copy

@ Mark & sweep

CLASSIC ALGORITHMS

root
set

ro

rl

seciomantic

@ Reference counting
@ Semi-space copy

@ Mark & sweep

CLASSIC ALGORITHMS

root
set

ro

rl

seciomantic

@ Reference counting
@ Semi-space copy

@ Mark & sweep

CLASSIC ALGORITHMS

root
set

ro

seciomantic

@ Reference counting
@ Semi-space copy

@ Mark & sweep

CLASSIC ALGORITHMS

root
set

ro

seciomantic

@ Reference counting
@ Semi-space copy

@ Mark & sweep

CLASSIC ALGORITHMS

root
set

ro

seciomantic

STATE OF THE ART

@ 50+ years of research & development (3000+ papers)

@ Goal

| Execution time

! Number of collections

| Collection time

| Pause time (maximum)

@ Techniques
-Partitions
-Concurrency
-Type information (precision/conservativeness)
-Static analysis

seciomantic

CLARIFICATION

@ D1/TANGO ONLY! SORRY...

-But all shouldn’t be too different from druntime

@ UNIX ONLY

-And tested only on Linux

seciomantic

HEAP STRUCTURE

Heap
Pool O Pool 1 Pool 2 Pool 3 Pool N
Page 0 Page 0 Page 0 Page 0 Page 0
(8x512) (4x1024) (64x64) (2x2048) (1x4096)
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Page 1 Page 1 Page 1 Page 1
(16x256) (8x512) (32x128) (1x4096)
Block
Block
Block
Block
Block
Block
Block
Block
Block

HEAP > POOLS > PAGES > BLOCKS + FREE LISTS

seciomantic

BLOCKS

«@ Fixed Size

@ Small Objects

-16 to 4096 bytes in powers of 2
-One page stores only one block size
-But blocks of the same size can live in discontinuous pages and different pools

«@ Big objects
-Size multiple of page size (4096, 8192,..)
-Each object lives in contiguous pages (and in the same pool)

@ Flags
-One bit set per pool
-Several flags (bits) per block (mark, scan, free, etc.)

seciomantic

ALGORITHM

@ Mark & Sweep

lterative mark phase (no recursion)

@ Conservative
With a pinch of precision (NO_SCAN)

@ Allocation-triggered

Only kicks in when an allocation request can’t be fulfilled

@ Stop-the-world
Only in the mark phase (in theory)

@ Global lock

Too prone to extend the stop-the world time in practice

seciomantic

Creates a new process (child) as
a copy of the current one

Child process is born with
a snapshot of the parent’s

memory

Isolate modifications in parent
and child’s memory

Minimizes the actual copy of
memory (COW)

Starts with one thread only (the
one called the fork(2))

Very efficient

Parent Process

VM

Page Table

hello

Page 1
Page 2
Page 3

[used]

world

Pre-Fork

bye

[free]

FORK (2)

seciomantic

Creates a new process (child) as
a copy of the current one

Child process is born with
a snapshot of the parent’s

memory

Isolate modifications in parent
and child’s memory

Minimizes the actual copy of
memory (COW)

Starts with one thread only (the
one called the fork(2))

Very efficient

Parent Process

Page Table

Page 1
Page 2
Page 3

FORK (2)

Post-Fork

VM Child Process
hello <
Page Table
[used]
Page 1
world [< Page 2
Page 3
bye <
[free]

seciomantic

Creates a new process (child) as
a copy of the current one

Child process is born with
a snapshot of the parent’s

memory

Isolate modifications in parent
and child’s memory

Minimizes the actual copy of
memory (COW)

Starts with one thread only (the
one called the fork(2))

Very efficient

Parent Process

Page Table

FORK (2)

Page 1
Page 2

Page 3

Parent write to Page 3

VM Child Process
hello
Page Table
[used]
Page 1
world Page 2
Page 3
bye
Byeee

seciomantic

MAIN ALGORITHM

@ Based on “Non-intrusive Cloning Garbage Collector with Stock
Operating System Support” (Gustavo Rodriguez-Rivera and Vince

Russo)
@ Minimizes pause time through concurrent mark phase using fork(2)
@ Parent process keeps running the program
@ Child process runs the mark phase
@ Results are communicated through shared memory
@ Minimal synchronization: fork(2) + waitpid(2)

seciomantic
PROBLEMS

@ Thread that triggered the collection is blocked until the end of the
collection is completed (including the concurrent mark phase)

@ Other threads might be potentially blocked too (global lock)

— Real pause time ~= total collection time (not very concurrent
In_practice)

seciomantic

EAGER ALLOCATION

@ Creates a new pool before starting the concurrent mark phase
-Resolves the memory allocation with the new pool
-Runs the mark phase really concurrently

@ Let all program threads keep running in parallel to the mark phase

@ Compromise
T Memory usage
| Real pause time

seciomantic

EARLY COLLECTION

@ Triggers a preemptive collection before the memory is really
exhausted

@ Let all program threads keep running in parallel to the

mark phase

-Until the memory is exhausted
-Doesn’t guarantee small pauses all the time

@ Might run more collections than necessary

@ Compromise
T CPU usage (potentially)
| Pause time (not guaranteed)

Combinable
-Eager allocation avoids blocking
-Early collection minimize potential high memory usage

seciomantic

OTHER IMPROVEMENTS

@ Configurable at initialization-time
@ Through environment variables (p_cc_opTs=fork=0 ./prog)

@ Old compile-time options converted to initialization-time options
mem_stomp

sentinel

@ New options

pre_alloc

min_ free
malloc_stats_file
collect_stats_file
fork

eager _alloc

early collect

seciomantic

GENERALITIES

@ Multiple runs (20-50)
-Minimize measurement errors

-Results expressed in terms of:
-Minimum
-Average
-Maximum
-Standard deviation

« Minimize variance between runs
—cpufreg-set(1)
-nice(1l)

—ionice(l)

@ 4 cores

seciomantic

TESTBED

@ Trivial programs (7)
-Stress particular aspects
-Don’t perform a useful task
-Pathological cases

@ Small programs - Olden Benchmark (5)
-Relatively small (400-1000 SLOC)
-Perform an useful task
-Manipulate lots of lists and tree structures, allocating a lot
-Not exactly fair to GC benchmarking

@ Real program - Dil (1)
-D compiler written in D
-Fairly big and complex (32K+ SLOC, 86 modules, 300+ classes)
-Written without GC (limitations or advantages) in mind
-Strings, dynamic and associative array manipulation

s@ciomantic
METRICS

@ MAXIMUM STOP-THE-WORLD TIME
@ MAXIMUM REAL PAUSE TIME
@ PEAK MEMORY USAGE

@ TOTAL EXECUTION TIME

seciomantic

MAXIMUM STOP-THE-WORLD TIME

min

media+/-dstd

max 1

1 | _

0.8 +
0.6
04
0.2 +

éeggg %?go éeggg} %?go @@ Q@Q' e@a Q@Q' e@ %,

bigarr conalloc concpu mcore rn ata sb ee spllt blsort em3d tsp voron0| dil

seciomantic

MAXIMUM REAL PAUSE TIME

min

media+/-dstd

max 1
1 = I — -
0.8 _
0.6 _
04 | -
0.2 -

0 4,C 4,C 4,C 4,C
L UL S e@a @@ Q@Q' e@a Q@Q' G@Q’ e@Q R
Do e 9% 20 e
bigarr conalloc concpu mcore rn data sb ee spllt h blsort em3d tsp voron0| dil

seciomantic

PEAK MEMORY USAGE

min E—

media+/-dstd mm—

max]
1L -
0.8 | -
0.6 4
04 | -
0.2 r 4

0

é@é’gg %?go ée@a Q@Q’ &0 % Q@Q' %% %, e@a 600' e@cy Q@Q' éegggo

dil

bigarr conalloc concpu mcore rn data sb ee spl|t h blsort em3d tsp voron0|

seciomantic

TOTAL EXECUTION TIME

min
media+/-dstd
max]
1L _
0.8
0.6
04 |
0.2
0 4,C 4,C 4,C o o 4,C
L UL Q”@Q’ e@a &0 Q@Q' e@a @@Q oo
o e 2o s .
bigarr conalloc concpu mcore rn data sb ee spl|t h blsort em3d tsp voronoi dil

seciomantic

SUMMARY

STOP-THE-WORLD TIME 160 TIMES LOWER
DIL: 1.66s -> 0.01s

REAL PAUSE TIME 40 TIMES LOWER
DIL: 1.7s -=> 0.045s

DIL: 213MiB -> 307MiB

TOTAL EXECUTION TIME 3 TIMES LOWER

@)
@)
@ PEAK MEMORY USAGE COULD BE 50% HIGHER
@)
DIL: 55s -> 20s

(@

TESTED IN REAL WORLD
USED IN SOCIOMANTIC FOR ALMOST 2 YEARS

seciomantic

PROBLEMS, LIMITATIONS AND OUTSTANDING ISSUES

@ Memory usage explosion with eager allocation
Probably partly due to an (already fixed) bug

@ Improve prediction for early collection
@ Experiment with clone(2)

@ Possible DEADLOCK when using glibc

Internal glibc mutex + signals + stopped threads

seciomantic
FUTURE WORK

@ Sweep phase
@ Concurrency ! Global Lock
@ Stop-the-world without using signals

@ Moving collector

seciomantic

QUESTIONS

T

-

M\wm .
T
iy

|

1.4
HAL

THANK YOU

Q

t

S«@Cloman

