DDMD AND AUTOMATED

CONVERSION FROM C++T1TO D
Daniel Murphy (aka ‘yebblies’)

G1Juoo(q - dwada

ABOUT ME

Using D since 2009
Compiler contributor since 2011

grjuoo(- AINAd

OVERVIEW

Why convert the frontend to D
What’s so hard about it
What happened to previous attempts

How magicport works
Future of (D)DMD

grjuoo(- AINAd

WHY CONVERT THE FRONTEND TO D?

“The point i1s not to use the compiler to stress test the
language. NOT AT ALL. The point is to improve the

compiler by taking advantage of what D offers.” —
Walter Bright

D 1s much nicer to work with than C++
Refactoring is easier
Avoid wasting time on C++ limitations

Take advantage of powerful features to improve
performance

grjuoo(- AINAd

THE CHALLENGE

Frontend 1s pretty big
Currently ~120k lines
Rapidly changing
~20 pull requests per week

Inevitable problems make estimating time
difficult

Pausing development for months is undesirable

grjuoo(- AINAd

PAST APPROACHES

Port by hand (original DDMD)
Rewrite from scratch (SDC)

grjuoo(- AINAd

HAND PORT

Compiler 1s big
More work added every day as pull requests are
merged

Uncontrollable urge to refactor/rearrange
High probability of introducing bugs

Theoretically possible, never successfully finished

grjuoo(- AINAd

RE-WRITE FROM SCRATCH

Chance to do a clean, new design!
Iron out errors in the spec

Lose work done on implementing complex features
(but keep the test suite)

Compiler 1s big
Huge amount of work compared to direct porting

SDC 1s being actively developed
Completion time 1s uncertain

grjuoo(- AINAd

A NEW APPROACH

Automatically convert source
Development continues non-stop on original

Switch to D version only when generated code 1s
good enough

grjuoo(- AINAd

AUTOMATIC CONVERSION — ATTEMPT 1

Tokenize source (after pre-processing)
Search and replace patterns

id “->’ id becomes id €.’ id
Simple to implement
Gets 95% of the way there

grjuoo(- AINAd

AUTOMATIC CONVERSION — ATTEMPT 1

Source after pre-processing means only one platform
can be supported

Last 5% 1s made entirely of special cases
Even basic semantic analysis is very difficult

Had to resort to hardcoding variable names for some
rules

Too hard
Gave up
Could be used to assist hand porting

grjuoo(- AINAd

AUTOMATED CONVERSION — ATTEMPT 2

Parse C++ source
Adjust AST
Write out D source

C++ 1s really hard to parse
Really, really hard

Pre-processor 1s not part of C++ (but we have to
parse 1t anyway)

grjuoo(- AINAd

AIM LOWER

Don’t accept all C++ code
Don’t have to handle invalid code

Build list of types before parsing
Whatisa * b; ?
Depends on what symbols a and b are

Some tricky cases can be special-cased
Don’t support templates (except Array)

grjuoo(- AINAd

MAKING THINGS EASIER

We can cheat!
Style can be normalized in C++ source

Can change the source to use features that are
easler to convert

Manually port tricky parts instead of supporting
more features

Array
SignExtendedNumber

grjuoo(- AINAd

CONVENTIONAL WISDOM

“My experience chiming in - never ever ever
attempt to refactor while translating. What
always happens 1s you wind up with a mess that
just doesn't work.” — Walter Bright

Rules are different for automatic conversion
Translating takes < 10 seconds

If it doesn’t work, throw away the result and try
again

grjuoo(- AINAd

OUTCOME

Lots of changes made to C++ source
Automatic porting then worked on 97%
10 files manually ported

Templates

Operator overloading
OS/Memory/low level code

grjuoo(- AINAd

MAGICPORT

C++ to D source to source compiler
Some very basic analysis of code

D pretty printer
~6000 lines (of horrific hacks)

grjuoo(- AINAd

LIMITATIONS

Tool 1s single-use
Makes lots of assumptions about code

No variables have the same names as types

Multi-var declarations will have a single type
Many translations hard-coded

#defined values become manifest constants

Macros are re-written as template functions

grjuoo(- AINAd

LEXING

Tokenize source
Very simple
Assume ASCII
Doesn’t need to be efficient
Recognize pre-processor constructs as tokens (e.g.

H#ifdef)

grjuoo(- AINAd

TYPE LIST

Scan through tokens looking for type names
Match patterns
‘class’ ? 3’
‘struct’ ? {°
‘“typedef’ ‘Array’ ‘< fclass’ ? %’

€ o)
J

Build list to make parsing easier

(>J

?

grjuoo(- AINAd

PARSING

Parse our version of C++
25% of total code
Limited subset of C++

E.g. Can’t handle function pointer types in many places
No error recovery

Builds simplified AST
a.b / a->b / a::b all produce a.b

grjuoo(- AINAd

ANALYSIS

Build lists of class declarations, call expressions,
etc.

Check that all types in list are referenced
Count declarations inside #ifdef blocks
Remove duplicate declarations (typedef)

grjuoo(- AINAd

MERGING

Merge function declarations
Take body from definitions
Take default arguments from forward declarations

Check for mismatches or duplicates

Same thing for static member variables

grjuoo(- AINAd

SPECIAL CASE

Scope has a default constructor

Automatically convert it to default member
1nitializers

grjuoo(- AINAd

STRIP OUT DEAD DECLARATIONS

#includes

Empty version blocks
#undef

Include guards

Default ctors

‘extern’ function prototypes

grjuoo(- AINAd

COLLECT DECLARATIONS

Build hash map containing all top-level
declarations

Use simple mangling scheme

‘function importHint’

‘struct Loc’
‘enum LINK’

Include parameter names for overloaded
functions

grjuoo(- AINAd

D GENERATION

List of modules and members in json file
List of imports
List of members (using mangled name)

Extra D code (e.g. "extern (C++) Library
LibEIlf factory();",)

Write out each file
Error on unknown declarations
Error on unreferenced declarations

grjuoo(- AINAd

#IFDEF 1SSUES

#i1f doesn’t follow language grammar
if (x
#if SOMETHING
&& vy
#endif
)
Difficult to parse

Sometimes 1mpossible

grjuoo(- AINAd

#IFDEF 1SSUES

Cheat!

Just change the C++ source to something valid in
D

if (x && (!SOMETHING || y))
Usually very straightfoward
C++ code generally benefits from this too

grjuoo(- AINAd

COMMENT ISSUES

Can (and do) appear anywhere
if (x && y /*&& z*/) { }
if (x)
/*doSomething()*/;

Lots and lots of special cases to parse correctly
Instead, parse the most common cases
Remove rest from C++ source

grjuoo(- AINAd

CONVERTS SUCCESSFULLY!

Generated code doesn’t compile
Local variable shadowing is 1llegal in D
Implicit narrowing conversion is an error
Class handles don’t convert to void pointers
No 1mplicit struct construction
e.g.
void func(Loc loc);

func(9);

grjuoo(- AINAd

CAN’T COMPILE

D string literals are passed to varargs functions
as arrays

D checks for goto skipping variable initializations
are much stricter that C++

sizeof(arr)/sizeof(arr[0]) doesn't work in D
#defines are not scoped

String literals are type-checked
char *s = “Don’t ever do this”;

All ‘fixed’ in C++ source

grjuoo(- AINAd

D’S LIMITATIONS

No struct default constructors
Re-wrote structs so default initializers were all zero
(except Scope)

version() 1s much less powerful than #if
version(A || (B && C))
Used static if instead

No way to define data from command line
Like —-DNAME=VALUE

grjuoo(- AINAd

IT COMPILES!

But AST classes will need to be accessed from
C++ glue layer

Added missing support for C++ classes
Allowed non-virtual C++ member functions

Allowed C++ member variables

Now we can try linking against the glue layer

grjuoo(- AINAd

C++ MANGLING ISSUES

Linker error everywhere

struct and class have different mangling

C++ has three char types — which one to use?
Defined our own utf8_t

uint64_t 1s not always the same type
unsigned long — freebsd64, linxu64, osx64
unsigned long long - *32, win64

size_t 1s not always the same type
unsigned int — win32, linux32, freebsd32
unsigned long — osx32

Solution — drop osx32 dmd binary support

grjuoo(- AINAd

C++ ABI ISSUES
It then links, but crashes

Member layout/alignment mismatches
Generate code to check offsets

Calling convention mismatches
Fuzz tester

vtbl layout (win32)

Overloaded functions are reversed 1n vtbl

Varargs problems
Argument passing wrong on posix64 and win64
va_copy doesn’t work on posix64

grjuoo(- AINAd

OTHER BACKEND BUGS
~8 codegen bugs found in DMD backend

DMD 1s not 1idiomatic D

Exercises a ‘new’ subset

Tough to reduce and tough to fix

grjuoo(- AINAd

OUTSTANDING ISSUES

FP returns broken on win32 (DMC and/or DMD)
Still have struct passing bugs on posix64

Constructor and destructor calls do not work
across language boundary

All worked around!

grjuoo(- AINAd

COSMETIC ISSUES

D doesn’t support out-of-class function definitions
Move compiler passes to visitor interface
Allows keeping layout the same in C++ and D

Allows backends to add passes without modifying frontend
classes (sometimes)

grjuoo(- AINAd

Minor array/string/comment formatting issues
dfmt might be able to fix these one day
Could just fix them after transition to D

WHERE NEXT?

Fix remaining performance issues
~20% hit due to compiling with DMD vs GCC

Clean up generated code
Wait for GDC/LDC to catch up to 2.067
Delete C++ code and switch

Port DMD glue layer to D

Get GC working with DDMD
Requires all allocations be done through GC

Remove backend-dependent code from frontend

grjuoo(- AINAd

PULL REQUESTS WILL BREAK

Most can be automatically updated
Rebase on top of last C++ commait
Automatically convert to D
Diff against first D commit
Rebase on top of latest master

Not significantly harder than rebasing to fix a
normal conflict

grjuoo(- AINAd

TIMELINE

Started experimenting — 2012

Forum thread: ‘Migrating dmd to D? — February 2013
First commit — March 2013

Zero link errors — June 2013

All ‘compilable’ tests pass — July 2013

Self-hosts on win32 — July 2013

Self-hosts on linux — December 2013

Can use unpatched master as host and source —
February 2014

grjuoo(- AINAd

TIMELINE

Linux DDMD goes green on autotester — July 2014
All platforms green on autotester — February 2015

Magicport and manually ported source merged into
master — April 2015

> 2 years
398 pull requests — over 8% of total dmd pull request

grjuoo(- AINAd

MAGICPORTING OTHER PROJECTS

Must use a small, consistent subset of C++
Need easy access to refactor the C++ source
Doesn’t rely too heavily on the preprocessor

Must be comfortable debugging memory corruption
This will get better in the future

Must have good understanding of low-level C++
details

Well worth the effort!

grjuoo(- AINAd

QUESTIONS?

¢ryuoo(d - AINAA

