
DDMD AND AUTOMATED

CONVERSION FROM C++ TO D
Daniel Murphy (aka ‘yebblies’)

D
D

M
D

 - D
co

n
f1

5

1

ABOUT ME

 Using D since 2009

 Compiler contributor since 2011

D
D

M
D

 - D
co

n
f1

5

2

OVERVIEW

 Why convert the frontend to D

 What‟s so hard about it

 What happened to previous attempts

 How magicport works

 Future of (D)DMD

D
D

M
D

 - D
co

n
f1

5

3

WHY CONVERT THE FRONTEND TO D?

 “The point is not to use the compiler to stress test the
language. NOT AT ALL. The point is to improve the
compiler by taking advantage of what D offers.” –
Walter Bright

 D is much nicer to work with than C++

 Refactoring is easier

 Avoid wasting time on C++ limitations

 Take advantage of powerful features to improve
performance

D
D

M
D

 - D
co

n
f1

5

4

THE CHALLENGE

 Frontend is pretty big

 Currently ~120k lines

 Rapidly changing

 ~20 pull requests per week

 Inevitable problems make estimating time

difficult

 Pausing development for months is undesirable

D
D

M
D

 - D
co

n
f1

5

5

PAST APPROACHES

 Port by hand (original DDMD)

 Rewrite from scratch (SDC)

D
D

M
D

 - D
co

n
f1

5

6

HAND PORT

 Compiler is big

 More work added every day as pull requests are

merged

 Uncontrollable urge to refactor/rearrange

 High probability of introducing bugs

 Theoretically possible, never successfully finished

D
D

M
D

 - D
co

n
f1

5

7

RE-WRITE FROM SCRATCH

 Chance to do a clean, new design!

 Iron out errors in the spec

 Lose work done on implementing complex features
(but keep the test suite)

 Compiler is big

 Huge amount of work compared to direct porting

 SDC is being actively developed

 Completion time is uncertain

D
D

M
D

 - D
co

n
f1

5

8

A NEW APPROACH

 Automatically convert source

 Development continues non-stop on original

 Switch to D version only when generated code is

good enough

D
D

M
D

 - D
co

n
f1

5

9

AUTOMATIC CONVERSION – ATTEMPT 1

 Tokenize source (after pre-processing)

 Search and replace patterns

 id ‘->’ id becomes id ‘.’ id

 Simple to implement

 Gets 95% of the way there

D
D

M
D

 - D
co

n
f1

5

10

AUTOMATIC CONVERSION – ATTEMPT 1

 Source after pre-processing means only one platform
can be supported

 Last 5% is made entirely of special cases

 Even basic semantic analysis is very difficult

 Had to resort to hardcoding variable names for some
rules

 Too hard

 Gave up

 Could be used to assist hand porting

D
D

M
D

 - D
co

n
f1

5

11

AUTOMATED CONVERSION – ATTEMPT 2

 Parse C++ source

 Adjust AST

 Write out D source

 C++ is really hard to parse

 Really, really hard

 Pre-processor is not part of C++ (but we have to

parse it anyway)

D
D

M
D

 - D
co

n
f1

5

12

AIM LOWER

 Don‟t accept all C++ code

 Don‟t have to handle invalid code

 Build list of types before parsing

 What is a * b; ?

 Depends on what symbols a and b are

 Some tricky cases can be special-cased

 Don‟t support templates (except Array)

D
D

M
D

 - D
co

n
f1

5

13

MAKING THINGS EASIER

 We can cheat!

 Style can be normalized in C++ source

 Can change the source to use features that are

easier to convert

 Manually port tricky parts instead of supporting

more features

 Array

 SignExtendedNumber

D
D

M
D

 - D
co

n
f1

5

14

CONVENTIONAL WISDOM

 “My experience chiming in - never ever ever
attempt to refactor while translating. What
always happens is you wind up with a mess that
just doesn't work.” – Walter Bright

 Rules are different for automatic conversion

 Translating takes < 10 seconds

 If it doesn‟t work, throw away the result and try
again

D
D

M
D

 - D
co

n
f1

5

15

OUTCOME

 Lots of changes made to C++ source

 Automatic porting then worked on 97%

 10 files manually ported

 Templates

 Operator overloading

 OS/Memory/low level code

D
D

M
D

 - D
co

n
f1

5

16

MAGICPORT

 C++ to D source to source compiler

 Some very basic analysis of code

 D pretty printer

 ~6000 lines (of horrific hacks)

D
D

M
D

 - D
co

n
f1

5

17

LIMITATIONS

 Tool is single-use

 Makes lots of assumptions about code

 No variables have the same names as types

 Multi-var declarations will have a single type

 Many translations hard-coded

 #defined values become manifest constants

 Macros are re-written as template functions

D
D

M
D

 - D
co

n
f1

5

18

LEXING

 Tokenize source

 Very simple

 Assume ASCII

 Doesn‟t need to be efficient

 Recognize pre-processor constructs as tokens (e.g.

„#ifdef‟)

D
D

M
D

 - D
co

n
f1

5

19

TYPE LIST

 Scan through tokens looking for type names

 Match patterns

‘class’ ? ‘;’

‘struct’ ? ‘{‘

‘typedef’ ‘Array’ ‘<‘ ‘class’ ? ‘*’ ‘>’ ?
‘;’

 Build list to make parsing easier

D
D

M
D

 - D
co

n
f1

5

20

PARSING

 Parse our version of C++

 25% of total code

 Limited subset of C++

 E.g. Can‟t handle function pointer types in many places

 No error recovery

 Builds simplified AST

 a.b / a->b / a::b all produce a.b

D
D

M
D

 - D
co

n
f1

5

21

ANALYSIS

 Build lists of class declarations, call expressions,

etc.

 Check that all types in list are referenced

 Count declarations inside #ifdef blocks

 Remove duplicate declarations (typedef)

D
D

M
D

 - D
co

n
f1

5

22

MERGING

 Merge function declarations

 Take body from definitions

 Take default arguments from forward declarations

 Check for mismatches or duplicates

 Same thing for static member variables

D
D

M
D

 - D
co

n
f1

5

23

SPECIAL CASE

 Scope has a default constructor

 Automatically convert it to default member

initializers

D
D

M
D

 - D
co

n
f1

5

24

STRIP OUT DEAD DECLARATIONS

 #includes

 Empty version blocks

 #undef

 Include guards

 Default ctors

 „extern‟ function prototypes

D
D

M
D

 - D
co

n
f1

5

25

COLLECT DECLARATIONS

 Build hash map containing all top-level

declarations

 Use simple mangling scheme

 „function importHint‟

 „struct Loc‟

 „enum LINK‟

 Include parameter names for overloaded

functions

D
D

M
D

 - D
co

n
f1

5

26

D GENERATION

 List of modules and members in json file

 List of imports

 List of members (using mangled name)

 Extra D code (e.g. "extern (C++) Library

LibElf_factory();",)

 Write out each file

 Error on unknown declarations

 Error on unreferenced declarations

D
D

M
D

 - D
co

n
f1

5

27

#IFDEF ISSUES

 #if doesn‟t follow language grammar

if (x

#if SOMETHING

 && y

#endif

)

 Difficult to parse

 Sometimes impossible

D
D

M
D

 - D
co

n
f1

5

28

#IFDEF ISSUES

 Cheat!

 Just change the C++ source to something valid in

D

if (x && (!SOMETHING || y))

 Usually very straightfoward

 C++ code generally benefits from this too

D
D

M
D

 - D
co

n
f1

5

29

COMMENT ISSUES

 Can (and do) appear anywhere

if (x && y /*&& z*/) { }

if (x)

 /*doSomething()*/;

 Lots and lots of special cases to parse correctly

 Instead, parse the most common cases

 Remove rest from C++ source

D
D

M
D

 - D
co

n
f1

5

30

CONVERTS SUCCESSFULLY!

 Generated code doesn‟t compile

 Local variable shadowing is illegal in D

 Implicit narrowing conversion is an error

 Class handles don‟t convert to void pointers

 No implicit struct construction

e.g.

 void func(Loc loc);

 func(0);

D
D

M
D

 - D
co

n
f1

5

31

CAN‟T COMPILE

 D string literals are passed to varargs functions
as arrays

 D checks for goto skipping variable initializations
are much stricter that C++

 sizeof(arr)/sizeof(arr[0]) doesn't work in D

 #defines are not scoped

 String literals are type-checked
 char *s = ‚Don’t ever do this‛;

 All „fixed‟ in C++ source

D
D

M
D

 - D
co

n
f1

5

32

D‟S LIMITATIONS

 No struct default constructors

 Re-wrote structs so default initializers were all zero

(except Scope)

 version() is much less powerful than #if

 version(A || (B && C))

 Used static if instead

 No way to define data from command line

 Like –DNAME=VALUE

D
D

M
D

 - D
co

n
f1

5

33

IT COMPILES!

 But AST classes will need to be accessed from

C++ glue layer

 Added missing support for C++ classes

 Allowed non-virtual C++ member functions

 Allowed C++ member variables

 Now we can try linking against the glue layer

D
D

M
D

 - D
co

n
f1

5

34

C++ MANGLING ISSUES

 Linker error everywhere

 struct and class have different mangling

 C++ has three char types – which one to use?
 Defined our own utf8_t

 uint64_t is not always the same type
 unsigned long – freebsd64, linxu64, osx64

 unsigned long long - *32, win64

 size_t is not always the same type
 unsigned int – win32, linux32, freebsd32

 unsigned long – osx32

 Solution – drop osx32 dmd binary support

D
D

M
D

 - D
co

n
f1

5

35

C++ ABI ISSUES

 It then links, but crashes

 Member layout/alignment mismatches
 Generate code to check offsets

 Calling convention mismatches
 Fuzz tester

 vtbl layout (win32)
 Overloaded functions are reversed in vtbl

 Varargs problems
 Argument passing wrong on posix64 and win64

 va_copy doesn‟t work on posix64

D
D

M
D

 - D
co

n
f1

5

36

OTHER BACKEND BUGS

 ~8 codegen bugs found in DMD backend

 DMD is not idiomatic D

 Exercises a „new‟ subset

 Tough to reduce and tough to fix

D
D

M
D

 - D
co

n
f1

5

37

OUTSTANDING ISSUES

 FP returns broken on win32 (DMC and/or DMD)

 Still have struct passing bugs on posix64

 Constructor and destructor calls do not work

across language boundary

 All worked around!

D
D

M
D

 - D
co

n
f1

5

38

COSMETIC ISSUES

 D doesn‟t support out-of-class function definitions

 Move compiler passes to visitor interface

 Allows keeping layout the same in C++ and D

 Allows backends to add passes without modifying frontend

classes (sometimes)

 Minor array/string/comment formatting issues

 dfmt might be able to fix these one day

 Could just fix them after transition to D

D
D

M
D

 - D
co

n
f1

5

39

WHERE NEXT?

 Fix remaining performance issues
 ~20% hit due to compiling with DMD vs GCC

 Clean up generated code

 Wait for GDC/LDC to catch up to 2.067

 Delete C++ code and switch

 Port DMD glue layer to D

 Get GC working with DDMD
 Requires all allocations be done through GC

 Remove backend-dependent code from frontend

D
D

M
D

 - D
co

n
f1

5

40

PULL REQUESTS WILL BREAK

 Most can be automatically updated

 Rebase on top of last C++ commit

 Automatically convert to D

 Diff against first D commit

 Rebase on top of latest master

 Not significantly harder than rebasing to fix a

normal conflict

D
D

M
D

 - D
co

n
f1

5

41

TIMELINE

 Started experimenting – 2012

 Forum thread: „Migrating dmd to D?‟ – February 2013

 First commit – March 2013

 Zero link errors – June 2013

 All „compilable‟ tests pass – July 2013

 Self-hosts on win32 – July 2013

 Self-hosts on linux – December 2013

 Can use unpatched master as host and source –

February 2014

D
D

M
D

 - D
co

n
f1

5

42

TIMELINE

 Linux DDMD goes green on autotester – July 2014

 All platforms green on autotester – February 2015

 Magicport and manually ported source merged into

master – April 2015

 > 2 years

 398 pull requests – over 8% of total dmd pull request

D
D

M
D

 - D
co

n
f1

5

43

MAGICPORTING OTHER PROJECTS

 Must use a small, consistent subset of C++

 Need easy access to refactor the C++ source

 Doesn‟t rely too heavily on the preprocessor

 Must be comfortable debugging memory corruption
 This will get better in the future

 Must have good understanding of low-level C++
details

 Well worth the effort!

D
D

M
D

 - D
co

n
f1

5

44

QUESTIONS?

D
D

M
D

 - D
co

n
f1

5

45

