Memory, What Is It All About?

Amaury SECHET
@deadalnix

Von Neumann Architecture

Control

Flow
L |

Memory is slow

* About 300 cycles to hit memory
* Bandwidth still increasing
* Latency only marginally increasing

Memory is slow - Caching

* Add faster memory on CPU.

* Various size and speed

— Signal needs time to travel
— L1: 3-4 cycles, 32kb

* |Instruction
* Data

— L2: 8-14 cycles, 256kb
— L3: tens of cycles, few Mb, often shared
— Cache line: 64 bytes

Memory is slow - Caching

L1 L1D

Flow

Memory is slow — Prefetching

* CPU observe memory access pattern and try
to predict what is going to be accessed next

* Trade memory bandwidth for hope
* Usually worthwhile

Memory is slow — Good Practices

Put what you can on the stack, it’s hot

Pack you data !
— std.bitmanip is your friend.

Avoid indirections

— Sometime duplication is preferable

— This include indirect branches

— NB: The optimizer don’t like them either

Use linear or pseudo linear access pattern
Size your data structures

— LZ4 use a 16kb dictionary
— ZSTD uses a 16kb finite state automaton

MMU

Map virtual addresses to physical addresses
— Only the OS knows about physical addresses

Check access right
Done by pages, usually 4kb

Translation must be done before cache lookup
— Kind of

Data about pages are cached in the TLB

— Usually 16 entries in the first level

MMU

Welcome multicore

* |tis everywhere
— |n servers
— In desktops
— In laptops
* Even in mobile devices

Welcome multicore

* Improvement of single core CPU give smaller
and smaller returns

* Technology still allow for more transistors in a
chip

 Multi core is the next logical step

Welcome multicore

* Unlike previous CPU improvement
— Visible to the programmer
— Require to adapt programs
— A lot of non obvious subtleties
— Programmer sanity is in danger

Welcome multicore

“... a folk definition of insanity is to do the same
thing over and over again and to expect the
results to be different. By this definition, we in
fact require that programmers of multithreaded
systems be insane. Were they sane, they could
not understand their programs.”

Edward A. Lee

Usual suspects

6’6"
6'0"
2’6"
2’0"
4’6"

vf-si‘ ' |
’ ” # »
40 R |
. |
e

W |

il
36" IR

3'0"

Usual suspects

* Language semantic
 Compiler
* CPU

Language semantic

Most languages defined before multicores
Do not multithread at all
Do it in undefined manner

Hard to retrofit the right semantic
— C++11
— Java 1.5 (JSR-133)

Language semantic

Can’t change semantic of existing code
Or make it way slower

Add new well defined options

— Can’t be made safe by default

— Rely on programmer

— Mistakes are undefined behavior

Newer languages like D MUST have a solution

Compiler

The compiler do its best to ensure maximum
performances

Single threaded semantic is preserved
Optimizations can become visible on multicore

Optimizer must be essentially disabled for
multicore correctness

— Only a subset of the code will suffer if language
semantic makes it explicit which are which

— Otherwise everything is slow or unsafe

CPU

Each core write in its cache
Data is committed to memory asynchronously

Other core see write out of order...
— when reading from memory
— when reading from cache

Or even can erase each other’s writes

CPU — MOESI Cache coherency

Cache coherency protocol

— Each core exchanges cache state with others
— Via a dedicated bus

MOESI is a cache coherency protocol

It is simple...

— To not say simplistic

Actual CPUs use more complex mechanisms
But the basics remains

MOESI — Cache line states

" Stte | Read/Write | Read only

Dirty Modified Owned
Clean Exclusive Shared

None Invalid

Red text indicate ownership

MOESI - Reading

e MOES : read from cache

* | :acquire cache line
— O :Getacopyas$S
— M : Get a copy as S, other core goesto O
— E : Get a copy as S, other core goesto S
—Sorl:Getacopyfrommemory

MOESI - Writing

M : write to cache
E : write to cache, go to M

OS : acquire cache line in write mode

— Invalidate other entries
— Write and go to M

| : acquire cache data in write mode
— Similar to reading process

— Invalidate other entries

— Write and go to M

MOESI - Conclusion

e 2 nice scenarios

— Only one core use a cache line
* Fast read and write

— No write to the cache line

* Several core can share the line
* Line can be fetched from other cores

* Avoid sharing and writing
— Core will have to pass the line back and forth
— Slow and use a lot of bandwidth

MOESI - Conclusion

Keep data thread local
Prefers sharing immutable data
Avoid sharing mutable data

Avoid contention on a cache line
— Add padding around frequently written variables
— LMAX disruptor PaddedLong

Sequential Consistency

* Memory operations appear in a consistent
order for all cores

* |t turns out that developers like it
— Non linear time is confusing
— If you think you can handle it you are likely wrong
— Try to watch Primer and reconsider

* Some extra optimizations get into the way

— Memory barrier required

CPU — Store buffer

e Store can stall
— Cache line must be acquired
— Or other core’s cache line invalidated

e We don’t want to stall execution
e Store are put in a buffer

— And CPU continue execution

CPU — Store buffer

Store are placed in a buffer

Wait until the cache line is acquired

Store is done when the cache line is ready
Load look in store buffer and cache
Execution continue in the meantime
Store can be done out of order

Store buffer is invisible to other cores

CPU - Invalidate Queue

Invalidates are acknowledged immediately
But processed later
CPU can read outdated data from cache

CPU must check its queue to send invalidate
or copies of a cache line

— Must issue an acquire-invalidate instead

CPU — Memory barrier

* Required to ensure sequential consistency
e 4 kind

— LoadlLoad

— StoreStore

— LoadStore
— StorelLoad

CPU - StorelLoad

* Flush Store buffer
* Flush invalidate queue

* The most expensive barrier
— No mainstream architecture ensures it

CPU — On existing CPU

__ Barier | X8 ARM

LoadLoad no-op dmb
StoreStore no-op dmb-str
LoadStore no-op dmb

Storeload Locked instruction dmb
mfence

We are doomed /o\

* Years of optimizations are firing back

e Existing languages provide terrible semantic
— Memory shared implicitly
— Correctness is not ensured for concurrent access

— Developer must ensure correctness manually

We are doomed /o\

Standard testing practices do not work
Algorithms must be proven correct

Failures are non deterministic and hard to
reproduce

That means hard to debug

And impossible to bisect

D - Memory Model

* Everything is thread local by default
— Global aren’t really global
— Data can’t be shared between threads

D - Thread Local

Widget w; // Thread local

void fun() {
// Widget is thread local

w = new Widget();

D - Thread Local

Thread local is the default
The compiler can optimize maximally
No need for synchronization

By default, each thread lives in its own
universe

— Information sharing is always explicit

— Makes life easier for the developer

— Makes life easier for the compiler

D - Memory Model

* Everything is thread local by default
— Global aren’t really global
— Data can’t be shared between threads

* Objects can be declared immutable
— Immutable can only reference immutable
— Immutable can be shared between threads

D - Immutable

struct S {
int* 1i;

}

void foo(int* i) {
auto a = S(i); // OK
auto b = immutable(S)(i); // Fail
}

void bar(immutable int* i) {
auto a = S(i); // Fail
auto b = immutable(S)(i); // OK

D - Immutable

* Everything you can reach through an
immutable object is immutable

— Immutable is transitive
* No synchronization needed
 Compiler can optimize based on immutability

— Not done right now

D - Memory Model

* Everything is thread local by default
— Global aren’t really global
— Data can’t be shared between threads

* Objects can be declared immutable
— Immutable is transitive
— Immutable can be shared between threads

e Or shared...

— Also called “I’'m asking for trouble”

D - Shared

Transitive as immutable

Everything you can reach via shared is either
shared or immutable

Compiler ensure sequential consistency
— Except DMD

— Your lock free code is probably wrong anyway

You generally want to avoid it

D — Memory Model

-0 Rl 4

Current D’s GC

Stop the world
Mark and sweep

Lock on all allocations/deallocations
Find memory pool in log(N) while scanning

Not much

— Not precise

— Not concurrent
— Not generational
— Not parallel

Improving, but the APl between compiler and runtime
ultimately very limiting

A Good Alocator for D

e Fast at malloc/free
* Fast at GC
* Interior pointer detection

* Low fragmentation
— Internal (requested size vs allocated size)
— External (No “holes”)
— Reduce pressure on cache and MMU

* Comply with system programming

* Maintain metadata for arrays

SDC —work in progress

* Segregate the heap
— One heap for thread local for each thread
— One heap for shared and immutable

 TL heap is stop the world

— The world in only one thread

 Immutable/Shared is concurrent
— Write barrier ?
— Not as bad as it seems

SDC — Thread local GC

No need to lock or be thread safe
Segregate the heap

Thread that do not generate garbage are not
impacted

Mostly done
— Array metadata
— GC scan, but do not collect

Inspired from jemalloc
— Modified to find interior pointer quickly
— Remove TL cache and locking

SDC - Shared heap

* Use thread local cache to reduce contention
— tcmalloc and jemalloc
— At the cost of fragmentation
— Tuning and tweaking required

* Concurrent collection problem :
— Reference is read from memory
— Reference is then overwritten in memory

— Local copy exist, but GC don’t see it

SDC - Concurrent collection

No weird GC pauses
Free concurrency !
Even more floating garbage

— Not a problem on desktop/server
— Not suitable for embedded

Require write barrier
— Tricky to do AOT

SDC - Write barrier

* Always insert them
— Make all stores expensive
— VM language can swap implementation
— @system code able to bypass barrier (scary)

e Use MMU

— Trap everything, not only pointer
— Can be enabled/disabled at will

— VERY expensive (few thousands cycles)

SDC - Concurrent collection

* New allocations :
— Considered live

— No need to scan, reference in there come from
e Other new allocations (live)
* Preexisting allocation (will be scanned)

* Protect unscaned memory

— Mark old value before updating
— Use MMU to do so

 Used in ML language with great success

SDC - Concurrent collection

Write in memory are mainly
— Immutable initialization
— Shared write

New allocs aren’t scanned, no protection
needed

Shared is assumed to be a minor part of the
heap

MMU can work

Implicit sharing

Immutable delegate can have mutable context
— Need fully qualified delegates: DIP30
— Will not handle

Exceptions
— Only when the thread terminate

Pure function
— Result can be promoted to immutable

std.allocator needs to handle this

Heap merging

Merge heap on thread join
Pure functions
— Create new heap before calling

— Setitas TL heap
— Merge it into the TL heap on return

Perform GC on merge
Performance ?

Proposal: make it a language construct (isolated/
owned)

— Can pass reference while keeping segregation

— Allow compiler to optimize further

— Safely enable many multithreading use cases

SDC — Optimizations ?

Immutable naturally generational
— Can this be leveraged ?

When a reference does not escape, add free
Promote pair alloc/free on stack

— |s size unknown, add a check

Do it by adding passes into the optimizer

— |t can benefit from inlining

SDC — This should not allocate |

int[] getArray() {
return [1, 2, 3];

}

void main() {
foreach(i; getArray()) {
import std.stdio;

writeln(i);
}
}

SDC — This should not allocate |

class Foo {
void doSomething() { ... }

}

class Builder {
Foo build() { return new Foo(); }

}

void main() {

auto b = new Builder();
auto f = b.build();
f.doSomething();

}

