

D Adoption Case Study

Andy Smith
andyrsmith@gmail.com

Outline

● Quick Adoption History
● Business overview
● Software requirement
● Where D addresses these
● Event Sourcing Description
● Architecture

D Adoption History

Business Overview
● Group within a Fund management firm

– Accountable at Group, Firm, & Regulatory Authority

● Technology function to support business
– Market Data Recording

– Trading Frameworks
● Interact directly with brokers

– Introduce new data sources

– Simulation / Analysis tools

● Competitive / Time pressure environment

 Requirements ...

● Correctness
● Testability
● Reliability
● Modifiable
● Productive
● Performant

What makes D a good citizen

● Fast development iterations (DMD)
● Built-in unit-tests
● C-like Syntax
● Posix Availability
● Good Standard Library
● Easy to modify
● (So far) no nasty language surprises

Phobos Goodness

● Time savers
– Commandline option parsing

– JSON Parsing

– DateTime module

– Atomics

– Bitop

– CSV. Inescapable in finance!

Event Sourcing

Event Sourcing

● Represent Everything as stream of events
– Ordered

– Persisted

● Examples of Events
– Orders

– Executions

– User actions
● Button Press
● Numeric Field change

– Heartbeats

System is a pure State Function

(Sn+1 ,On+1)=f (Sn , I n)

● Inputs (State,Input Event) 2-tuple
● Outputs (State,Output Event) 2-tuple

System is a 'fold-left' over events

S1=f (S0 , E0)

S2=f (S1 , E1)

S3=f (S2 , E2)

S3=f (f (S1 , E1) , E2)

S3=f (f (f (S0 , E0) , E1) , E2)

Sn=f 2(S0 , E0 , E1 , E2 ... En−1 , En)

i.e. a pure function of initial +input events

Purity?

If we are 'pure' we get …
● Determinism

– Same result every time. Repeatable behaviour

– Regression testing

– Post-Trade analysis

– Auditable

● Resilience
– Copy events off to another box for standby system

● Parallelizable

But ...

But ... lied a bit :-(
● Pure functional version performs badly

– Allocate new state for every event

– Even with persistent structures not good enough

● Imperative code with state mutation much faster
– That's what we ACTUALLY have

● However ...
– Same input still produces same outputs

– Mutation still okay

– c.f. Clojure 'transients'

– Lose ability to cache intermediate state objects

Architecture

Layered Separation of Concerns

Concurrency
Persistence
Event Dispatch

Business
Logic

Inner layer – Business Logic

● Simple vanilla callback code
● Handles

– Order Logic

– Stats calculations

– Profit/Loss calculations

● Single threaded
– Cache friendly

● Gets time from the outer layer

Outer Layer (the D parts!)
● Handles

– Concurrency

– Persistence

– Event Delivery

● Implemented in terms of
– Stream consumers

– Event Loop (Live or Simulation)
● Decides (and persists) event firing order

Live Event Sources

MD Index Source

12321 1

12432 1

12543 2

Simulation
● Single Threaded
● Streams are 'delay lines' not concurrency
● Only one 'fundamental' source, the Market Data

Where is D used?

Where is D used?

Why there?
● Require C-linkage for optimal API usage
● Alternatives?

– JNI (homegrown)

– JNI (vendor)

– JNA (maybe)

– C / C++

● D with C-linkage + SHM kills two birds with one
stone

● Intention was to rewrite in C/C++ (probably C++11)
– But stuck with D

Stream == ???

● Credit
– Martin Thompson

– Peter Lawrey

● Contiguous
– Simple, mmap required memory segment

– Not so simple in Java-land mmap takes integer :-(

– Numpy friendly

– Page Faults

– Bounded, can run out!!

● Circular Array
– Less simple

– Cache friendly

– Need journal of retired entries

Stream Candidates
(Contiguous vs Circular Array)

Stream Implementation
with circular array

Tail
(writers)

Head
(readers)

MMFile Layout

|­­­­­­­­­­­­­+­­­­­­­­­­­­+­­­­­­­+­­­­­­­+­­­­­­­+­­­­­­­­­­­­­­|
| 128 | 128 | 128 | 128 | 128 | N * T.sizeof |
|­­­­­­­­­­­­­+­­­­­­­­­­­­+­­­­­­­+­­­­­­­+­­­­­­­+­­­­­­­­­­­­­­|
| ReserveTail | CommitTail | Head1 | Head2 | HeadN | Data |
|­­­­­­­­­­­­­+­­­­­­­­­­­­+­­­­­­­+­­­­­­­+­­­­­­­+­­­­­­­­­­­­­­|

Atomic 'incrementAndGet'
(courtesy of mnovak)

● We need 'LOCK XADD' ASM instruction on X86_64 for wait
free operation in a MPMC queue

● AKA 'UNSAFE.incrementAndGet' in Java 7+ land
● Unavailable in Phobos (as of writing), but not a problem...

MPMC Writer

Multiple Heads

A D solution to false sharing

● Java alternatives not very attractive

Market Data Consumption

D Market Data Message

Reading Structs in Java

Compile time introspection

Output...
Size is 48LU
Size is 48LU
 messageType 4 align=4 stringof= int offset=0
 securityId 4 align=4 stringof= int offset=4
 timeStamp 8 align=8 stringof= long offset=8
 bidQty 8 align=8 stringof= long offset=16
 bidPrice 8 align=8 stringof= double offset=24
 askQty 8 align=8 stringof= long offset=32
 askPrice 8 align=8 stringof= double offset=40

● Enough info to generate the java reader code at compile time

Electronic Trading

Trading

Trading API

● Relatively straightforward
● Process performs two tasks

– Convert outbound structs to strings (main thread)

– Convert inbound strings to structs (cb thread)

● One thread dedicated to each task
– No contention/locking

FIX ...

FIX Protocol
● 'Human Readable ?'
8=FIX.4.29=17835=849=PHLX56=PERS52=20071123­
05:30:00.00011=ATOMNOCCC999090020=3150=E39=E55=MSFT167=CS54=1
38=1540=244=1558=PHLX EQUITY

TESTING59=047=C32=031=0151=1514=06=010=128
● Warty Protocol

– Conflates OSI session + application layers in ugly ways

– Compare with
● MIDI
● Military Protocols
● Native exchange

● Parsing / Generation done with old school C-style string
processing

Conclusion

● D is very useful addition to toolbox
● Adoption was worth it
● Project completed faster than could have with C

/ C++
● Has a definite niche in finance

Q?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

