
Mihails Strasuns
me@dicebot.lv

Now we are porting

(a short time ago in a company not so far away)

Mihails Strasuns
me@dicebot.lv

Some basics:
● Sociomantic Labs : Real-Time Bidding startup founded in 2009
● http://en.wikipedia.org/wiki/Real-time_bidding
● One of biggest D users (and growing, aiming for ~50 full time D

developers in nearby future)
● More info at http://dconf.org/2014/talks/clugston.html
● Have been stuck with D1 for all that time
● Until recently

http://en.wikipedia.org/wiki/Real-time_bidding
http://dconf.org/2014/talks/clugston.html

Mihails Strasuns
me@dicebot.lv

Incoming:
● Porting process explanation
● Progress report
● Evaluating impact of various D1 → D2 changes
● Why breaking things is important
● Why deprecations matter

Mihails Strasuns
me@dicebot.lv

Migration process

Challenges

● can't compromise daily
development

● lots of code
● lots of code in shared

dependencies
● minimize communication

overhead
● real-time services are inherently

more fragile

Requirements

● must happen in parallel with feature
development

● avoid maintenance of multiple
versions

● must be able to rollback to D1
compiler/runtime at any moment

Mihails Strasuns
me@dicebot.lv

Observations:
● Some of the changes are simply due to D2 being more strict
● Can hide semantic differences behind wrapper functions / templates
● A few more changes remain but can be automated

Need better diagnostics:
const int* oops;
void main()
{
 auto x = 042;
 do { } while (true)
}

$ dmd1 -v2 -w -o- sample.d
sample.d(6): Warning: octal literals 042 are not in D2, use std.conv.octal!42
instead or hex 0x22 [-v2=octal]
sample.d(7): Warning: D2 requires that 'do { ... } while(...)' end with a ';' [-
v2=syntax]
sample.d(2): Warning: There is no const storage class in D2, make variable 'oops'
non-const [-v2=const]

Mihails Strasuns
me@dicebot.lv

transition.d
template Typedef(T, istring name, T initval)
{
 static assert (name.length, "Can't create Typedef with an empty identifier");
 version(D_Version2)
 {
 mixin(`
 enum Typedef =
 ("struct " ~ name ~
 "{ " ~
 T.stringof ~ " value = " ~ initval.stringof ~ ";" ~
 "alias value this;" ~
 "this(" ~ T.stringof ~ " rhs) { this.value = rhs; }" ~
 " }");
 `);
 }
 else
 {
 const Typedef = ("typedef " ~ T.stringof ~ " " ~ name ~
 " = " ~ initval.stringof ~ ";");
 }
}

● Hosts all migration utilities and wrappers
● Encapsulates version blocks

Mihails Strasuns
me@dicebot.lv

Dealing with const
template Const(T)
{
 version(D_Version2)
 {
 mixin("alias const(T) Const;");
 }
 else
 {
 alias T Const;
 }
}
version(D_Version2)
{
 mixin("
 alias immutable(char)[] istring;
 alias const(char)[] cstring;
 alias char[] mstring;
 ");
}
else
{
 alias char[] istring;
 alias char[] cstring;
 alias char[] mstring;
}

● Makes it possible to define
const correctness for D1
functions

● By far most effort consuming
part of the basic porting

● Plain `const` keyword used only
for manifest constants

● Works, but can be very
challenging with templates (see
next slide)

Mihails Strasuns
me@dicebot.lv

Const!(T) + templates
T[] escape(T) (T[] src, T[] dst = null);

Original D1 template function

Const!(T)[] escape(T) (Const!(T)[] src, T[] dst = null);

Nope : can't infer `Const!(T)`

TC[] escape(T, TC) (T[] src, TC[] dst = null);
// static assert (is(Unqual!(T) == Unqual!(TC)));

Nope : wrongly inferred `null` type

TC[] escape(T, TC = Unqual!(T)) (T[] src, TC[] dst = null);
// static assert (is(Unqual!(T) == Unqual!(TC)));

Actual ported code

Mihails Strasuns
me@dicebot.lv

d1to2fix
● Based on https://github.com/Hackerpilot/libdparse
● Takes care of changes trivial to automate and annoying to do

manually
● Last step that turns D1 source code into working D2 source code
● Imperfect but good enough for our needs

const something = init;
// ->
enum something = init;

struct S {
 S* foo() {
 return this;
 }
}
// ->
struct S {
 S* foo() {
 return (&this);
 }
}

https://github.com/Hackerpilot/libdparse

Mihails Strasuns
me@dicebot.lv

Runtime
void appendTo(ref int[] dst)
{
 dst ~= 42;
}

void main()
{
 int[] buffer = [1, 2, 3, 4];
 auto slice = buffer; slice.length = 0;
 appendTo(slice); appendTo(slice);
 // ok in D1, fails in D2
 assert (buffer == [42, 42, 3, 4]);
}

// transition.d
void enableStomping(T)(ref T array)
{
 version(D_Version2)
 {
 assumeSafeAppend(array);
 }
 else
 {
 // no-op
 }
}

Mihails Strasuns
me@dicebot.lv

GC
● Latency requirements more important than throughput – special

coding style that rarely triggers GC
● Use custom CDGC : http://dconf.org/2013/talks/lucarella.html
● Proof of concept port to D2

https://github.com/D-Programming-Language/druntime/pull/985
● Will likely to be redone completely on top of existing druntime GC
● Remains speculative topic until at least one real-time application is

fully ported and can be benchmarked

http://dconf.org/2013/talks/lucarella.html
https://github.com/D-Programming-Language/druntime/pull/985

Mihails Strasuns
me@dicebot.lv

Porting process summary

Stage 1

Ensure the code compiles with dmd1 -v2 -w using helpers from
transition.d – fixes as many issues as possible while staying within
D1 toolchain.

Stage 2

Try running d1to2fix and compiling the code with dmd2, fixing any
remaining issues (mostly const correctness). Revert d1to2fix
changeset to ensure that it still compiles with dmd1

Stage 3

Regression control and maturity. Add Jenkins job that ensures application
master stays compatible with D2 and automatically pushes output of
d1to2fix to dedicated branch.

Do any runtime profiling as necessary.

Mihails Strasuns
me@dicebot.lv

https://www.sociomantic.com/search/tag/dlang

https://www.sociomantic.com/search/tag/dlang

Mihails Strasuns
me@dicebot.lv

Tiers of language changes

“What can possibly go wrong?”

Mihails Strasuns
me@dicebot.lv

Good

// Warning: D2 requires that 'do { ... } while(...)' end with a ';'
// Deprecation: implicitly overriding base class method A.foo with B.foo deprecated
// Deprecation: function mymod.foo is deprecated - use mymod.bar instead

● Fix is straightforward and suggested by the error message
● Gives time to adjust for a change
● No fundamental change in semantics

Mihails Strasuns
me@dicebot.lv

Bad

const MyClass obj;
obj.foo();
// Error: mutable method mod.MyClass.foo is not callable using a const object

● Total change in semantics – hard to even track the point of failure
without dedicated diagnostics

● No 1-to-1 replacement for old semantics, impossible to automate
● No intermediate adjustment step
● Can't be done in small chunks (transitivity)

Mihails Strasuns
me@dicebot.lv

Ugly

int[] arr1 = [1, 2, 3];
int[] arr2 = arr1[0 .. $];
arr2.length = 0; arr2 ~= 42;
assert (arr1[0] == 42);

● Manifests only as runtime change
● May result in silent performance degradation with no error
● Impossible to track down without custom runtime build and/or

performance profiling
● Primary suspect effect : can never be sure it is all fixed

Mihails Strasuns
me@dicebot.lv

● Suggested by Don Clugston as a way to measure how justified the
change is

● “Investment” from the language developer PoV – how hard it is to
implement and maintain, how much does it complicate the
language.

● “Investment” from the language user PoV – how much effort it
takes to upgrade existing code, how much disruption in daily
development it causes

ROI

Mihails Strasuns
me@dicebot.lv

#pleasebreakmycode

Getting the Devil from the Details

Mihails Strasuns
me@dicebot.lv

● Necessary : technical debt becomes more costly with increased
team size

● Even nitpick changes are justified if they result in an improved
learning curve and communication

● Can't afford to be stable in moving industry
● Lack of hope makes developers unhappy

Stance on breaking changes

● Process matters : same breakage can be both welcome and hated
depending on how well it was presented and managed

● Deprecations matter : “normal” development takes priority

Mihails Strasuns
me@dicebot.lv

Bugfixes
User is reading the changelog. His

reaction is likely to be:

“Oh. We'd better not
have any code that

uses it in production.
Sound the alarm!”

“Yeah, I probably should
clean that after

implementing those two
next features”

Just break it

2.067 example:
invariants inside

unions

Deprecation
process is still

desired

2.067 example:
redundant postfix

qualifiers

Mihails Strasuns
me@dicebot.lv

Better versioning?

DMD

● Version pattern 2.XXX.Y
● Language has changed a lot since 2.000
● Each DMD release pretends to be minor but is in fact major
● No clear timelines for deprecations

SemVer

● Version pattern MAJOR.MINOR.PATCH
● PATCH : when you make backwards-compatible bug fixes
● MINOR : when you add functionality in a backwards-compatible

manner
● MAJOR : when you make incompatible API changes

Mihails Strasuns
me@dicebot.lv

● Currently not present in changelog at all
● Most important thing to check upon release : helps to plan

upgrade, reduces research investment
● Clearly differentiates intended changes from regressions
● Comes as the very first block in Sociomantic internal changelogs

Migration Instructions?

Mihails Strasuns
me@dicebot.lv

● https://github.com/Hackerpilot/dfix is sweet
● More promises of https://github.com/Hackerpilot/libdparse
● Hard to do reliable refactorings without full semantics analysis
● Example: symbol renaming. Requires to implement imports,

scopes, fully qualified names, templates, mixins…
● “compiler as library” seems necessary. SDC?

dfix?

https://github.com/Hackerpilot/dfix
https://github.com/Hackerpilot/libdparse

Mihails Strasuns
me@dicebot.lv

Just one more slide...

Mihails Strasuns
me@dicebot.lv

We are hiring!

https://www.sociomantic.com/careers

● Berlin, Germany
● Both backend (D) and frontend (PHP/JavaScript) developers
● Ask us anything : careers@sociomantic.com

https://www.sociomantic.com/careers
mailto:careers@sociomantic.com

