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Now we are porting

(a short time ago in a company not so far away)
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Some basics:
● Sociomantic Labs : Real-Time Bidding startup founded in 2009
● http://en.wikipedia.org/wiki/Real-time_bidding
● One of biggest D users (and growing, aiming for ~50 full time D 

developers in nearby future)
● More info at http://dconf.org/2014/talks/clugston.html 
● Have been stuck with D1 for all that time
● Until recently

http://en.wikipedia.org/wiki/Real-time_bidding
http://dconf.org/2014/talks/clugston.html
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Incoming:
● Porting process explanation
● Progress report
● Evaluating impact of various D1 → D2 changes
● Why breaking things is important
● Why deprecations matter
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Migration process 

Challenges

● can't compromise daily 
development

● lots of code
● lots of code in shared 

dependencies
● minimize communication 

overhead
● real-time services are inherently 

more fragile

Requirements

● must happen in parallel with feature 
development

● avoid maintenance of multiple 
versions

● must be able to rollback to D1 
compiler/runtime at any moment
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Observations:
● Some of the changes are simply due to D2 being more strict
● Can hide semantic differences behind wrapper functions / templates
● A few more changes remain but can be automated

Need better diagnostics:
const int* oops;
void main()
{
    auto x = 042;
    do { } while (true)
}

$ dmd1 -v2 -w -o- sample.d
sample.d(6): Warning: octal literals 042 are not in D2, use std.conv.octal!42 
instead or hex 0x22 [-v2=octal]
sample.d(7): Warning: D2 requires that 'do { ... } while(...)' end with a ';' [-
v2=syntax]
sample.d(2): Warning: There is no const storage class in D2, make variable 'oops' 
non-const [-v2=const]
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transition.d
template Typedef(T, istring name, T initval)
{
    static assert (name.length, "Can't create Typedef with an empty identifier");
    version(D_Version2)
    {
        mixin(`
            enum Typedef =
                ("struct " ~ name ~
                "{ " ~
                T.stringof ~ " value = " ~ initval.stringof ~ ";" ~
                "alias value this;" ~
                "this(" ~ T.stringof ~ " rhs) { this.value = rhs; }" ~
                " }");
        `);
    }
    else
    {
        const Typedef = ("typedef " ~ T.stringof ~ " " ~ name ~
            " = " ~ initval.stringof ~ ";");
    }
}

● Hosts all migration utilities and wrappers
● Encapsulates version blocks
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Dealing with const
template Const(T)
{
    version(D_Version2)
    {
        mixin("alias const(T) Const;");
    }
    else
    {
        alias T Const;
    }
}
version(D_Version2)
{
    mixin("
        alias immutable(char)[] istring;
        alias const(char)[]     cstring;
        alias char[]            mstring;
    ");
}
else
{
    alias char[] istring;
    alias char[] cstring;
    alias char[] mstring;
}

● Makes it possible to define 
const correctness for D1 
functions

● By far most effort consuming 
part of the basic porting

● Plain `const` keyword used only 
for manifest constants

● Works, but can be very 
challenging with templates (see 
next slide)
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Const!(T) + templates
T[] escape(T) (T[] src, T[] dst = null);

Original D1 template function

Const!(T)[] escape(T) (Const!(T)[] src, T[] dst = null);

Nope : can't infer `Const!(T)`

TC[] escape(T, TC) (T[] src, TC[] dst = null);
// static assert (is(Unqual!(T) == Unqual!(TC)));

Nope : wrongly inferred `null` type

TC[] escape(T, TC = Unqual!(T)) (T[] src, TC[] dst = null);
// static assert (is(Unqual!(T) == Unqual!(TC)));

Actual ported code



Mihails Strasuns
me@dicebot.lv

d1to2fix
● Based on https://github.com/Hackerpilot/libdparse
● Takes care of changes trivial to automate and annoying to do 

manually
● Last step that turns D1 source code into working D2 source code
● Imperfect but good enough for our needs

const something = init;
// ->
enum something = init;

struct S {
    S* foo() {
        return this;
    }
}
// ->
struct S {
    S* foo() {
        return (&this);
    }
}

https://github.com/Hackerpilot/libdparse
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Runtime
void appendTo(ref int[] dst)
{
    dst ~= 42;
}

void main()
{
    int[] buffer = [ 1, 2, 3, 4 ];
    auto slice = buffer; slice.length = 0;
    appendTo(slice); appendTo(slice);
    // ok in D1, fails in D2
    assert (buffer == [ 42, 42, 3, 4 ]);
}

// transition.d
void enableStomping(T)(ref T array)
{
    version(D_Version2)
    {
        assumeSafeAppend(array);
    }
    else
    {
        // no-op
    }
}
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GC
● Latency requirements more important than throughput – special 

coding style that rarely triggers GC
● Use custom CDGC : http://dconf.org/2013/talks/lucarella.html
● Proof of concept port to D2 

https://github.com/D-Programming-Language/druntime/pull/985 
● Will likely to be redone completely on top of existing druntime GC
● Remains speculative topic until at least one real-time application is 

fully ported and can be benchmarked

http://dconf.org/2013/talks/lucarella.html
https://github.com/D-Programming-Language/druntime/pull/985
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Porting process summary

Stage 1

Ensure the code compiles with dmd1 -v2 -w using helpers from 
transition.d – fixes as many issues as possible while staying within 
D1 toolchain.

Stage 2

Try running d1to2fix and compiling the code with dmd2, fixing any 
remaining issues (mostly const correctness). Revert d1to2fix 
changeset to ensure that it still compiles with dmd1

Stage 3

Regression control and maturity. Add Jenkins job that ensures application 
master stays compatible with D2 and automatically pushes output of 
d1to2fix to dedicated branch.

Do any runtime profiling as necessary.
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https://www.sociomantic.com/search/tag/dlang 

https://www.sociomantic.com/search/tag/dlang


Mihails Strasuns
me@dicebot.lv

Tiers of language changes

“What can possibly go wrong?”
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Good

// Warning: D2 requires that 'do { ... } while(...)' end with a ';'
// Deprecation: implicitly overriding base class method A.foo with B.foo deprecated
// Deprecation: function mymod.foo is deprecated - use mymod.bar instead

● Fix is straightforward and suggested by the error message
● Gives time to adjust for a change
● No fundamental change in semantics
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Bad

const MyClass obj;
obj.foo();
// Error: mutable method mod.MyClass.foo is not callable using a const object

● Total change in semantics – hard to even track the point of failure 
without dedicated diagnostics

● No 1-to-1 replacement for old semantics, impossible to automate
● No intermediate adjustment step
● Can't be done in small chunks (transitivity)
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Ugly

int[] arr1 = [ 1, 2, 3 ];
int[] arr2 = arr1[0 .. $];
arr2.length = 0; arr2 ~= 42;
assert (arr1[0] == 42);

● Manifests only as runtime change
● May result in silent performance degradation with no error
● Impossible to track down without custom runtime build and/or 

performance profiling
● Primary suspect effect : can never be sure it is all fixed
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● Suggested by Don Clugston as a way to measure how justified the 
change is

● “Investment” from the language developer PoV – how hard it is to 
implement and maintain, how much does it complicate the 
language.

● “Investment” from the language user PoV – how much effort it 
takes to upgrade existing code, how much disruption in daily 
development it causes

ROI
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#pleasebreakmycode

Getting the Devil from the Details
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● Necessary : technical debt becomes more costly with increased 
team size

● Even nitpick changes are justified if they result in an improved 
learning curve and communication

● Can't afford to be stable in moving industry
● Lack of hope makes developers unhappy

Stance on breaking changes

● Process matters : same breakage can be both welcome and hated 
depending on how well it was presented and managed

● Deprecations matter : “normal” development takes priority
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Bugfixes
User is reading the changelog. His 

reaction is likely to be:

“Oh. We'd better not 
have any code that 

uses it in production. 
Sound the alarm!”

“Yeah, I probably should 
clean that after 

implementing those two 
next features”

Just break it

2.067 example: 
invariants inside 

unions

Deprecation 
process is still 

desired

2.067 example: 
redundant postfix 

qualifiers
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Better versioning?

DMD

● Version pattern 2.XXX.Y
● Language has changed a lot since 2.000
● Each DMD release pretends to be minor but is in fact major
● No clear timelines for deprecations

SemVer

● Version pattern MAJOR.MINOR.PATCH
● PATCH : when you make backwards-compatible bug fixes
● MINOR : when you add functionality in a backwards-compatible 

manner
● MAJOR : when you make incompatible API changes
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● Currently not present in changelog at all
● Most important thing to check upon release : helps to plan 

upgrade, reduces research investment
● Clearly differentiates intended changes from regressions
● Comes as the very first block in Sociomantic internal changelogs

Migration Instructions?
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● https://github.com/Hackerpilot/dfix is sweet
● More promises of https://github.com/Hackerpilot/libdparse
● Hard to do reliable refactorings without full semantics analysis
● Example: symbol renaming. Requires to implement imports, 

scopes, fully qualified names, templates, mixins…
● “compiler as library” seems necessary. SDC?

dfix?

https://github.com/Hackerpilot/dfix
https://github.com/Hackerpilot/libdparse
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Just one more slide...
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We are hiring!

https://www.sociomantic.com/careers 

● Berlin, Germany
● Both backend (D) and frontend (PHP/JavaScript) developers
● Ask us anything : careers@sociomantic.com

https://www.sociomantic.com/careers
mailto:careers@sociomantic.com

