D as a Better C

Simon Arneaud

https://theartofmachinery.com/

C and C++ are powerful languages
for systems programming

D is not a perfect alternative

(https://wiki.dlang.org/Language_ issues)

But D is better for many applications, today

(and getting even better, fast)

Super Short History of C
Dennis Ritchie, et al, needed a high-level
language to rewrite Unix in ~1970

"The C Programming Language" ("K&R C")
published in 1978

<blink>NOT THE FIRST LANGUAGE AFTER
ASSEMBLY</blink>

Originally only intended for the PDP-11, which
heavily influenced design

Super Short History of C++

Bjarne Stroustrup wanted a fast and convenient
language
Made original ""C with Classes" in 1979

Initial implementation literally just a
preprocessor for C

Language has since diverged (slightly) from C

Super Short History of D

Walter Bright was the author of Zortech, the
first native C++ compiler, and is responsible for
several advances in C++ compiler technology
since then

D1 released in 2001
D2 released in 2007

First DConf in 2013

Why a new language?
Why a "better C", not "better C++"?

C++'s biggest strength
and weakness:

backwards compatibility with C

Why do we need a better C?

enum reactor_id
{
REACTOR_A
REACTOR_B = 2,

n
-

¥

enum reactor_mode
{

OFF = 0,

NORMAL = 1,

EXPERIMENTAL = 2, // TODO: Delete this. Too dangerous. Really bad idea.
h

reactor.id = REACTOR_B;
reactor.mode = REACTOR_B;

o[foo_array]

if (is_ready);
{

launchMissile();

}

const and volatile

volatile is a broken mess
const is not so useful as a compiler hint

In C, pointers to pointers (e.g., arrays of strings)
are broken (and unsound)

Lack of low-level systems stuff in standard

Preprocessor includes instead of modules

Generally have to be re-evaluated every time thanks to side effects
Leads to hacks like "inline variables" in C++

(Try gcc -E or clang -E for fun sometime)

What about C++°?

Compilation times

Compiling C++:

Here[not] be
dragon[book]s

Result doStuff(Message);
Thing thing(config);

std::map<int, std::pair<int, int>>
val>>2

Just/lib/gcc/x86_64-pe-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h: In instantiation of 'std::pair<std::_Rb_tree_node_base*,
std::_Rb_tree_node_base*> std::_Rb_tree<_Key, _Val, _KeyOfvalue, _Compare, _Alloc>::_M_get_insert_unique_pos(const key_type&)
[with _Key = int; _Val = int; _KeyOfValue = std::_Identity<int>; _Compare = int; _Alloc = std::allocator<int>; std::_Rb_ tree<_Key, _Val,
_KeyOfValue, _Compare, _Alloc>::key_type = int]":
[usr/lib/gcc/x86__64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h:1498:47: required from 'std::pair<std::_Rb_ tree_iterator<_Val>,
bool> std::_Rb_ tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::_M_insert_unique(_Arg&&) [with _Arg = int; _Key = int; _Val = int;
_ KeyOfValue = std::_Identity<int>; _Compare = int; _Alloc = std::allocator<int>]"
/usr/lib/gcc/x86__64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_set.h:511:40: required from 'std::pair<typename std::_Rb_tree<_Key, _Key,
std::_Identity<_Key>, _Compare, typename __gnu_cxx::__alloc_traits<_ Alloc>::rebind<_Key>::other>::const_iterator, bool> std::set<_Key,
__Compare, _Alloc>::insert(std::set<_Key, _Compare, _Alloc>::value_type&&) [with _Key = int; _Compare = int; _Alloc = std::allocator<int>;
typename std::_Rb_tree<_Key, _Key, std::_Identity<_Key>, _Compare, typename
__gnu_cxx::__alloc_ traits<_ Alloc>::rebind<_ Key>::other>::const_iterator = std::_Rb_ tree_const_iterator<int>; std::set<_Key, _Compare,
_ Alloc>::value_type = int]"
error.cc:14:18: required from here
Jusr/lib/gce/x86__64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h:1445:11: error: expression cannot be used as a function
__comp =_M_impl._M_key_compare(__k, S_key(__x));
A
[usr/lib/gcc/x86__64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h:1456:7: error: expression cannot be used as a function
if (_M_impl._M_key_compare(_S_key(__j._M_node), __k))
A

Just/lib/gcc/x86_64-pe-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h: In instantiation of 'std::
_Compare, _Alloc>::iterator st

Rb_tree<_Key, _Val, _KeyOfValue,

__Val, _KeyOfValue, _Compare, _Alloc>::_M_insert_(std::_Rb_tree<_Key, _Val,
__Rb_tree<_Key, _Val, _KeyOfValue, _Compare, __ __Base_ptr, _Arg&&) [with _Arg =
Identity<int>; _Compare = int; _Alloc = std::allocator<int>; std::_Rb_tree<_Key, _Val,

_ KeyOfvalue, _Compare, __ _Rb_tree_iterator<int>; std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare,
_Alloc>::_Base_ptr = std::_Rb_ tree_node_base*]":

Jusr/lib/gcc/x86_64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h:1502:38: required from 'std::pair<std::_Rb_tree_iterator<_Val>, bool>
std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::_M_insert_unique(_Arg&&) [with _Arg = int; _Key = int; _Val = int;

_ KeyOfValue = std::_Identity<int>; _Compare = int; _Alloc = std::allocator<int>]"
Jusr/lib/gcc/x86_64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_set.h:511:40: required from 'std::pair<typename std::_Rb_tree<_Key, _Key,
std::_Identity<_Key>, _Compare, typename __gnu_cxx::__alloc_traits<_ Alloc>::rebind<_ Key>::other>::const_iterator, bool> std::set<_Key,

__Compare, _Alloc>::insert(std::set<_Key, _Compare, _Alloc>::value_type&&) [with _Key = int; _Compare = int; _Alloc = std::allocator<int>;
typename std::_Rb_tree<_Key, _Key, std::_Identity<_Key>, _Compare, typename
__gnu_cxx::__alloc_ traits<_ Alloc>::rebind<_ Key>::other>::const_iterator = std::_Rb_ tree_const_iterator<int>; std::set<_Key, _Compare,

_ Alloc>::value_type = int]"

error.cc:14:18: required from here

Jusr/lib/gcc/x86__64-pc-linux-gnu/4.9.4/include/g++-v4/bits/stl_tree.h:1140:
Il _M_impl._M_key_compare(_KeyOfValue()(__v),

: error: expression cannot be used as a function

A

struct Base

{
void doStuff(double x)
{
std::cout << "Got a double: " << x << std::endl;
}
¥
struct Derived : Base
{
void doStuff(int x)
{
std::cout << "Got an int: " << x << std::Bndl;
}
h
Derived d;

d.doStuff(3.141);

* . .
Batteries not included

Legacy

(E.g., enum VS enum class)

Low road: High road:

- C strings - C++ strings
- Preprocessor - Templates
- CI/O - C++ I/O
Integrates easily with C "Impedance mismatch" with C

(This is why the term "C/C++" is kind of silly.)

C Strings

J|Hle|l|l|o|\@|@|# |z

- Null-terminated arrays

- Memory management totally manual

- Mutable reference types

- Must recalculate string length whenever needed
- Substrings usually need to be copies

C++ Strings

Implementation-defined templated class
GNU libstdc++ has

- Length

- Capacity

- Reference count
- Data pointer

Generally

- Memory management controlled by string class
- Mutable value types

D Strings

YIH|e|1l|1l]|o

%

- Slices (pointer + length)
- BYO memory management
- Immutable reference types

Case Study

- Preprocess text file
- Answer queries

Approach #1:

1. Read file one buffer load at a time

2. Construct (copy) strings from buffer to insert into
data structure

3. Run query loop

Case Study

- Preprocess text file
- Answer queries

Approach #2:

1. Memory map file (std.mmfile)
2. Slice strings without copying
3. Run query loop

Not only was the initialisation much faster,
the main query loop was ~10-20% faster
thanks to better memory locality.

Could it work with C strings?

Can fully control the memory layout
Still need a copy to insert null bytes

Copied and mutated data isn't implicitly shared
with OS or other processes

Could it work with C++ strings?

Short answer: no

Longer answer: can partially control memory
layout using a custom allocator, but this
changes the string type

Still can't use the memory-mapped file data
effectively

What about D's overhead?
And who is this D. Runtime,

anyway?

import io = std.stdio;

class Greeter

{
void greet()
{
io.writeln("Hello");
}
}

void main()

{
auto greeter = new Greeter();
greeter.greet();

import io = std.stdio;

class Greeter

{
void greet()
{
io.writeln("Hello");
}
}
void main()
{
auto greeter = new Greeter();
greeter.greet();
}

1. My code

import io = std.stdio;

class Greeter

{
void greet()
{
io.writeln("Hello");
}
}
void main()
{
auto greeter = new Greeter();
greeter.greet();
}

1. My code
2. Imports

import io = std.stdio;

class Greeter

{
void greet()
{
io.writeln("Hello");
}
}
void main()
{
auto greeter = new Greeter();
greeter.greet();
}

1. My code
2. Imports
3. Compiler-generated code

import io = std.stdio;

class Greeter

{
void greet()
{
io.writeln("Hello");
}
}
void main()
{
auto greeter = new Greeter();
greeter.greet();
}

1. My code

2. Imports

3. Compiler-generated code
4. Runtime library

- Garbage collection

- Object (Base class of all D classes)

- Initialisation/cleanup of modules and static data
- Associative arrays

- Operations like struct equality and array copying
- Threads and TLS

- Run-time type information (TypeInfo)

(Having a runtime isn't just a D thing.)

It is not running in the background.

long factorial(int n)

{
long f = 1;
int j;
for (7 =1; j <= n; j++)
{
f *= j;
}
return f;
}

<_D1t9factorialFiZl>:

push
mov
mov
mov
mov
cmp
jl
movsxd
imul
mov
inc
cmp
jle
mov
pop
ret

rbp

rbp,rsp

rsi,rdi

edx, 0x1

rcx, rdx

esi,edx

13893 <_D1t9factorialFiZ1+0x23>
rax,ecx

rax,rdx

rdx, rax

ecx

ecx,esi

13883 <_D1t9factorialFiZ1+0x13>
rax, rdx

rbp

In a single-threaded program,
this is all that's running.

BTW, this is colloquially known as "Better C"

A subset of D with no D runtime dependencies

(I.e., all C-like code + some other features)

Garbage collection can only happen
on GC-based allocation

(or explicit GC.collect())

I.e., normal systems programming idioms like
allocating up front will avoid GC pauses

import core.memory;

void main()

{

GC.disable();
doSomethinglLatencySensitive();
GC.enable();

// About to do lots of memory-hungry stuff

// so improve performance by reserving GC memory up front
GC.reserve(1024 * 1024 * 1024);
doSomethingMemoryHungry();

GC.minimize();

message.sendToSomeServer();
GC.collect(); // Might as well run GC while waiting
waitForResponseFromSomeServer();

D supports

- Static allocation

- Stack allocation

- Plain-old heap allocation

- Garbage-collected heap allocation
- BYO memory with emplace

(No, really, it all works.)

"But I'm doing systems programming
so I can't use the runtime."

NB: This concern is not just about ricing performance.

"Why should I care? I have a multicore machine with
several gigs of RAM and terabytes of storage. Most of
the D runtime is in a shared library, anyway."

"T want to write mobile browser code in D. I can't use
shared libraries, and every downloaded kilobyte
counts."

Different applications have different needs.

More Case Studies

tsv-utils-dlang

https://github.com/eBay/tsv-utils-dlang

The "Keep Calm and Write Sensible Code'" approach

Tools for processing delimited text files (CSV, TSV, etc)
Made by Jon Degenhardt for data mining at eBay
Did not worry about avoiding features like GC

Performance due to common sense like avoiding redundant
copying and allocating

https://github.com/eBay/tsv-utils-dlang/blob/master/docs/Performance.md

Benchmark

Numeric row filter
(4.8 GB, 7M lines)
Regex row filter

(2.7 GB, 14M lines)
Column selection
(4.8 GB, 7M lines)
Join two files

(4.8 GB, 7M lines)
Summary statistics
(4.8 GB, 7M lines)
CSV-to-TSV

(2.7 GB, 14M lines)

. Tool/
Tool/Time Time
tsv-filter mawk
4.34 11.71
. GNU
tsv-filter awk
7.1 15.41
tsv-select mawk
4.09 9.38
tsv-join Toolkit 1
20.78 104.06
tsv-summarize Toolkit 1
15.83 40.27
csvatsv csvtk
27.41 36.26

Tool/ Tool/
Time Time
GNU roolkit 1

awk

22.02 53.11

mawk Toolkit 1
16.58 28.59
GNU cut Toolkit 1
12.27 19.12
Toolkit 2 Toolkit 3
194.80 266.42
Toolkit 2 Toolkit 3
48.10 62.97
XSV

40.40

Mir numerical library

https://github.com/libmir/mir

The "D as a Better C" approach
Collection of numerical libraries in D (think BLAS, NumPy)
by Ilya Yaroshenko
Uses -betterC flag and avoids D runtime features

Mir GLAS can be linked to plain C code as BLAS
implementation

High performance through solid engineering and effective
use of CPU features like SIMD

http://blog.mir.dlang.io/glas/benchmark/openblas/2016/09/23/glas-
gemm-benchmark.html

Complex single precision
General Matrix-matrix Multiplication

25
20
n 15 -~ Mir GLAS
% Eigen
z - OpenBLAS
6 Intel MKL
10 Apple Accelerate

o
=

S B ® O & & S L & & &
§ » 4 e & & & S .&6 & v-&

Matrix Size (m=n=k)

Auburn Sounds

https://www.auburnsounds.com/index.html

The enogc approach

Commercial audio plugins in D

Mostly relies on enogc for latency-sensitive code

Alternative: put audio handling in thread detached
from GC (see core.thread)

PowerNex

https://github.com/Vild/PowerNex

https://dlang.org/blog/2016/06/24/project-highlight-the-powernex-
kernel/

The stub runtime approach

An x6/4 OS project in D started by Dan Printzell

Ports a minimal subset of the D runtime to bare metal
(based on package by Adam Ruppe)

Intended to eventually support a complete D development
environment

Xanthe

https://gitlab.com/sarneaud/xanthe

https://theartofmachinery.com/2017/02/28/bare__metal_ d.html

The horrible hacks approach
Short vertical-scrolling shooter game demo that boots on
bare metal x86
Freestanding D
No D runtime
No C runtime

No OS

Even more case studies:

Weka.IO

Distributed data storage system

https://www.youtube.com/watch?v=q7wyQHF6SXY
Vibe.d

Event-loop-based web (and network) application
framework

https://dlang.org/blog/2017/03/01/project-highlight-vibe-d/

Questions?

Simon Arneaud

https://theartofmachinery.com/

enquiries@taom.systems

	D as a Better C
	Simon Arneaud
	https://theartofmachinery.com/

	Super Short History of C
	Super Short History of C++
	Super Short History of D
	C++'s biggest strengthand weakness:
	What about C++?
	Compilation times
	Compiling C++:
	Low road:
	High road:
	C Strings
	C++ Strings
	D Strings
	Case Study
	Approach #1:

	Case Study
	Approach #2:

	What about D's overhead? And who is this D. Runtime, anyway?
	BTW, this is colloquially known as "Better C"

	More Case Studies
	tsv-utils-dlang
	Mir numerical library
	Auburn Sounds
	PowerNex
	Xanthe
	Even more case studies:
	Questions?
	Simon Arneaud

