
© 2018– Andrei Alexandrescu, Ph.D. 1 / 34

Up & Coming
DConf 2018

Andrei Alexandrescu, Ph.D.

2018-05-03



Less Magic

© 2018– Andrei Alexandrescu, Ph.D. 2 / 34



© 2018– Andrei Alexandrescu, Ph.D. 3 / 34

“The most important principle in

designing a programming

language is defining a small kernel

that all other constructs use.”

—Simon Peyton-Jones



Magic Hurts

© 2018– Andrei Alexandrescu, Ph.D. 4 / 34

• Increases the surface of the language

• Must implement, document, explain, maintain

• “Quod licet Iovi, non licet bovi”

• User-available facilities awkward, different

semantics

• Difficulties for tooling



Examples

© 2018– Andrei Alexandrescu, Ph.D. 5 / 34



Examples

© 2018– Andrei Alexandrescu, Ph.D. 5 / 34

• Built-in hashtables



Examples

© 2018– Andrei Alexandrescu, Ph.D. 5 / 34

• Built-in hashtables

◦ Iteration is special



Examples

© 2018– Andrei Alexandrescu, Ph.D. 5 / 34

• Built-in hashtables

◦ Iteration is special

• Built-in slices



Examples

© 2018– Andrei Alexandrescu, Ph.D. 5 / 34

• Built-in hashtables

◦ Iteration is special

• Built-in slices

◦ Iteration is special

◦ Handling of qualifiers is special



Examples

© 2018– Andrei Alexandrescu, Ph.D. 5 / 34

• Built-in hashtables

◦ Iteration is special

• Built-in slices

◦ Iteration is special

◦ Handling of qualifiers is special

• Even Object

◦ ?



Can the compiler optimize this?

© 2018– Andrei Alexandrescu, Ph.D. 6 / 34

• Hat tip to Johan Engelen

ubyte foo(immutable ubyte[] arr) {

auto temp = arr[2];

fun();

return temp + arr[2];

}



Nope

© 2018– Andrei Alexandrescu, Ph.D. 7 / 34

• OK to cast immutable data to immutable

ubytes representing it

• Reasonable to assume immutable data won’t

change

• However:

◦ Object has magic: the monitor field

◦ Class objects cannot be seen as immutable

bytes!

◦ All other data types can!



© 2018– Andrei Alexandrescu, Ph.D. 8 / 34

“Here you strike and there it cracks.”

—Romanian proverb



We need reference counting

© 2018– Andrei Alexandrescu, Ph.D. 9 / 34

• Must work with @safe code

◦ Memory deallocation woes

• Must work with pure code

◦ Memory (de)allocation woes

◦ Need to improve the spec

• Must work with @nogc code

◦ Memory (de)allocation woes

• Must work with immutable data

◦ The reference counter ruins the day

• The same exact issues as the magic monitor!



Work in Progress (led by Timon Gehr)

© 2018– Andrei Alexandrescu, Ph.D. 10 / 34

• Add the __mutable storage class

◦ Much cheaper than a qualifier

• Cancels transitive application of qualifiers on

field access

• Applies to private members only

• Can only be manipulated by @system code

◦ mutable in mutable objects

◦ shared in shared objects

◦ const in const objects

• Interested? Let’s talk during the Hackathon!



ProtoObject

© 2018– Andrei Alexandrescu, Ph.D. 11 / 34



Fixing classes

© 2018– Andrei Alexandrescu, Ph.D. 12 / 34

• Object: design predates pure, @nogc. @safe,

and immutable

• Four primitives: toString, toHash, opCmp,

and opEquals

• Each violates some of the attributes/qualifiers

• The static factory doesn’t help either!



Fixing classes: Proposed

© 2018– Andrei Alexandrescu, Ph.D. 13 / 34

• ProtoObject becomes the base of all classes

• MonitoredProtoObject inherits ProtoObject

◦ Has one __mutable field!

• Object inherits MonitoredProtoObject

• Object remains the default base class

◦ And the one introducing factory

◦ 100% backward compatible

◦ 100% forward looking



factory

© 2018– Andrei Alexandrescu, Ph.D. 14 / 34

• Currently: forces all classes in a lib to be

linked in

• Better: use an opt-in interface

• Interface registers factory function with

registry

interface Sweatshop(T) {

...

}

class Product : Sweatshop!Product {

...

}



Aftermath

© 2018– Andrei Alexandrescu, Ph.D. 15 / 34

• Old code continues to work

• New code should inherit ProtoObject

• Implement primitives with better techniques

◦ Interfaces

◦ Templates

◦ Visitation

• Clunks like monitor and factory are opt-in



Copying Objects

© 2018– Andrei Alexandrescu, Ph.D. 16 / 34



this(this)

© 2018– Andrei Alexandrescu, Ph.D. 17 / 34

• Intent: avoid multiple maintenance points

• Design predates introspection

• Today trivially solved

struct S {

...

this(ref S rhs) {

foreach (i, e; rhs.tupleof)

this.tupleof[i] = e;

}

}



this(this)

© 2018– Andrei Alexandrescu, Ph.D. 18 / 34

• Design predates immutable, pure

• Currently not typechecked properly

• Defining typechecking would be a major effort

• A Pyrrhic victory even if done perfectly

◦ Very complex

◦ Very unlike the rest of D



Plan

© 2018– Andrei Alexandrescu, Ph.D. 19 / 34

• Design and use copy constructors

• Leverage typechecking in constructors

• Virtually no learning curve

• No new work invested in fixing this(this)

◦ Continue accepting it as is

◦ Marginalize

◦ Deprecate



Copying vs. Moving

© 2018– Andrei Alexandrescu, Ph.D. 20 / 34

• Fundamentally different operations

• When moving, source and target always have

same type

• Moving does not duplicate resources

• Intercepting moves subject of a different DIP



Systematic Introspection

© 2018– Andrei Alexandrescu, Ph.D. 21 / 34



State of Affairs

© 2018– Andrei Alexandrescu, Ph.D. 22 / 34

• Various introspection mechanisms:

◦ is(typeof(e)), is(typeof(e) == T)

◦
__traits(isThat, T)

◦ std.traits

◦ Atomic option: __traits(compiles, e)



Issues

© 2018– Andrei Alexandrescu, Ph.D. 23 / 34

• No underlying framework

• Inconsistent “API”

• Awkward to use

• Fun with ParameterStorageClassTuple,

anyone?

• Tenuous handing of function overloads



Vision

© 2018– Andrei Alexandrescu, Ph.D. 24 / 34

• Introspection framework

• Structure follows declaration structure:

◦ Open some module with Module!"name"

◦ Inside: data/types/function

de(clara|fini)tions

◦ Each has specific information attached

◦ Hierarchical access follows declaration

scopes



Example: data

© 2018– Andrei Alexandrescu, Ph.D. 25 / 34

• Get all global definitions:

struct Data {

string name;

string type;

string[] attributes;

}

...

enum Data[] d = Module!"mymod".data;



Example: functions

© 2018– Andrei Alexandrescu, Ph.D. 26 / 34

struct Function {

string name;

string type;

string resultType;

string resultModifier; // "" or "ref"

Parameter[] params;

string[] attributes;

}

...

enum Function[] d = Module!"mymod".functions;



Example: functions

© 2018– Andrei Alexandrescu, Ph.D. 27 / 34

struct Parameter {

string type;

string modifier; // "", "out", or "ref"

string[] attributes;

}



Approach

© 2018– Andrei Alexandrescu, Ph.D. 28 / 34

• Simple, self-explanatory data structures

• No insistence on hierarchies

• Prefer CTFE to templates

◦ Strings that can be mixed in

• Wherever possible allow CT and RT use



Compile-time: what do we want?

© 2018– Andrei Alexandrescu, Ph.D. 29 / 34

• Detailed module information

◦ Data

◦ Types

◦ Aliases

◦ Enums

◦ Functions

◦ Module cdtors

◦ Unittests

◦ . . .

• Use easily done with mixin + simple

wrappers



Run-time: what do we want?

© 2018– Andrei Alexandrescu, Ph.D. 30 / 34

• Essential/interface module information

◦ Types

◦ Functions

• Create objects dynamically

• Invoke functions dynamically

◦ Use Variant for params, results

• No need to support the entire language!

◦ No ref, out, . . .

◦ Client decides on @safe etc. at bind time



© 2018– Andrei Alexandrescu, Ph.D. 31 / 34

To Conclude



One Theme to Unify Them All

© 2018– Andrei Alexandrescu, Ph.D. 32 / 34



One Theme to Unify Them All

© 2018– Andrei Alexandrescu, Ph.D. 32 / 34

•
__mutable: enable refcounting w. immutable

@nogc pure @safe



One Theme to Unify Them All

© 2018– Andrei Alexandrescu, Ph.D. 32 / 34

•
__mutable: enable refcounting w. immutable

@nogc pure @safe

• ProtoObject: classes that work w. immutable

@nogc pure @safe



One Theme to Unify Them All

© 2018– Andrei Alexandrescu, Ph.D. 32 / 34

•
__mutable: enable refcounting w. immutable

@nogc pure @safe

• ProtoObject: classes that work w. immutable

@nogc pure @safe

• this(this): encapsulated types that work

w. immutable @nogc pure @safe



One Theme to Unify Them All

© 2018– Andrei Alexandrescu, Ph.D. 32 / 34

•
__mutable: enable refcounting w. immutable

@nogc pure @safe

• ProtoObject: classes that work w. immutable

@nogc pure @safe

• this(this): encapsulated types that work

w. immutable @nogc pure @safe

• Introspection: whaaaa?



A Good Programming Language

© 2018– Andrei Alexandrescu, Ph.D. 33 / 34



A Good Programming Language

© 2018– Andrei Alexandrescu, Ph.D. 33 / 34

Enforces its own

abstractions



A Good Programming Language

© 2018– Andrei Alexandrescu, Ph.D. 33 / 34

Celebrates its own

abstractions



© 2018– Andrei Alexandrescu, Ph.D. 34 / 34

immutable @nogc pure @safe

~this()


	Less Magic
	
	Magic Hurts
	Examples
	Can the compiler optimize this?
	Nope
	
	We need reference counting
	Work in Progress (led by Timon Gehr)

	`11`=12lstlanguage=DProtoObject
	Fixing `11`=12lstlanguage=Dclasses
	Fixing `11`=12lstlanguage=Dclasses: Proposed
	`11`=12lstlanguage=Dfactory
	Aftermath

	Copying Objects
	`11`=12lstlanguage=Dthis(this)
	`11`=12lstlanguage=Dthis(this)
	Plan
	Copying vs. Moving

	Systematic Introspection
	State of Affairs
	Issues
	Vision
	Example: data
	Example: functions
	Example: functions
	Approach
	Compile-time: what do we want?
	Run-time: what do we want?
	
	One Theme to Unify Them All
	A Good Programming Language
	


