
Project Blizzard 
Safe manual memory management

Alexandru Jercaianu 
University POLITEHNICA of Bucharest 

alex.jercaianu@gmail.com

DConf 2018 
Munich, May 2-5, 2018

mailto:alex.jercaianu@gmail.com


Manual memory management

High performance 

Deterministic lifetimes

2

Garbage collector

Safety 

Increase in productivity



Vulnerabilities

Use after free 

Buffer overflows 

Double free 

Undefined behavior

3



4



5



6



Blizzard allocator

Usable in safe code 

Mitigate dangling pointers 

High performance 

Coexist with other allocators

7



Related work

• Project Snowflake: Non-blocking safe manual memory 
management in .NET 

(https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-
memory-management-net/) 

• Simple, Fast and Safe Manual Memory Management 
(https://www.microsoft.com/en-us/research/publication/simple-fast-safe-manual-memory-management/)

8

https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/simple-fast-safe-manual-memory-management/


Allocators

9



Allocator examples

Region 

BitmappedBlock 

GCAllocator 

Mallocator

10



Building blocks

11



12



Problem

Reusing memory is not safe

13



Problem

Reusing memory is not safe

14

Solution

Always allocate at increasing addresses 

Great for 64bit



Ascending Page Allocator

Map a large chunk of virtual memory with no permissions

15



Ascending Page Allocator

Map a large chunk of virtual memory with no permissions

16



17

Each allocation advances a pointer and sets read/write 
permissions

Ascending Page Allocator



18

Ascending Page Allocator

Reclaim physical pages 
Remove read/write permissions



Ascending Page Allocator

Safe 

Page granularity 

Great for huge allocations 

High fragmentation

19







Allocation

• Return the first unused 16 byte block 
• Remember, do not reuse memory

22

Deallocation

• Given a 16 byte block, how to quickly find the 
corresponding 2MB chunk?







Aligned Block List

• Linked list of huge blocks, which are managed by another 
allocator (eg. BitmappedBlock) 

• Length of each block is equal to its alignment, allowing for fast 
deallocations

25



• SafeBitmappedBlock 
• AlignedBlockList 
• AscendingPageAllocator



SafeAllocator v1.0

27



SafeAllocator v1.0

28



29



SafeAllocator v1.0

30

• Safe (does not reuse memory) 

• High fragmentation 

• Lots of page faults



SafeAllocator v1.0

31

• Safe (does not reuse memory) 

• High fragmentation 

• Lots of page faults

Not reusing addresses is safe but inefficient



32



33

Reuse memory only for the same types



34



35



36



SafeAllocator v2.0

37

Safe 

High performance 

Scalable 



SafeAllocator v2.0

38

Safe 

High performance 

Scalable 

Many types = high fragmentation



39



40



Memory layout

41

Many types = High fragmentation 

Reuse memory among types with the same memory layout 



Layout

42



Layout

43



Layout

44



45

SafeAllocator v3.0



46



47



48



Summary

49



Future work

50

Improve documentation for current allocators 

Improve specification for Layout and SafeAllocator 

More benchmarks 



Acknowledgments

51


