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Manual memory management

High performance 

Deterministic lifetimes
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Garbage collector

Safety 

Increase in productivity



Vulnerabilities

Use after free 

Buffer overflows 

Double free 

Undefined behavior
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Blizzard allocator

Usable in safe code 

Mitigate dangling pointers 

High performance 

Coexist with other allocators
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Related work

• Project Snowflake: Non-blocking safe manual memory 
management in .NET 

(https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-
memory-management-net/) 

• Simple, Fast and Safe Manual Memory Management 
(https://www.microsoft.com/en-us/research/publication/simple-fast-safe-manual-memory-management/)
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https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/simple-fast-safe-manual-memory-management/


Allocators
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Allocator examples

Region 

BitmappedBlock 

GCAllocator 

Mallocator
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Building blocks
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Problem

Reusing memory is not safe
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Problem

Reusing memory is not safe
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Solution

Always allocate at increasing addresses 

Great for 64bit



Ascending Page Allocator

Map a large chunk of virtual memory with no permissions
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Ascending Page Allocator

Map a large chunk of virtual memory with no permissions
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Each allocation advances a pointer and sets read/write 
permissions

Ascending Page Allocator
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Ascending Page Allocator

Reclaim physical pages 
Remove read/write permissions



Ascending Page Allocator

Safe 

Page granularity 

Great for huge allocations 

High fragmentation
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Allocation

• Return the first unused 16 byte block 
• Remember, do not reuse memory
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Deallocation

• Given a 16 byte block, how to quickly find the 
corresponding 2MB chunk?







Aligned Block List

• Linked list of huge blocks, which are managed by another 
allocator (eg. BitmappedBlock) 

• Length of each block is equal to its alignment, allowing for fast 
deallocations
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• SafeBitmappedBlock 
• AlignedBlockList 
• AscendingPageAllocator



SafeAllocator v1.0
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SafeAllocator v1.0
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SafeAllocator v1.0
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• Safe (does not reuse memory) 

• High fragmentation 

• Lots of page faults



SafeAllocator v1.0
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• Safe (does not reuse memory) 

• High fragmentation 

• Lots of page faults

Not reusing addresses is safe but inefficient
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Reuse memory only for the same types
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SafeAllocator v2.0
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Safe 

High performance 

Scalable 



SafeAllocator v2.0
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Safe 

High performance 

Scalable 

Many types = high fragmentation
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Memory layout

41

Many types = High fragmentation 

Reuse memory among types with the same memory layout 



Layout
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Layout
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Layout
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SafeAllocator v3.0
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Summary
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Future work
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Improve documentation for current allocators 

Improve specification for Layout and SafeAllocator 

More benchmarks 



Acknowledgments

51


